

Math 309 - Spring-Summer 2017 Problem Set # 6

Completion Date: Friday June 16, 2017

Question 1.

With the aid of expressions,

$$|\sin z|^2 = \sin^2 x + \sinh^2 y$$

and

$$|\cos z|^2 = \cos^2 x + \sinh^2 y,$$

show that

- (a) $|\sinh y| \le |\sin z| \le \cosh y$;
- (b) $|\sinh y| \le |\cos z| \le \cosh y$.

Question 2.

Show that

- (a) $\overline{\cos(iz)} = \cos(i\overline{z})$ for all z;
- (b) $\overline{\sin(iz)} = \sin(i\overline{z})$ if and only if $z = n\pi i$ $(n = 0, \pm 1, \pm 2, ...)$.

Question 3.

Find all roots of the equation $\sin z = \cosh 4$ by equating real and imaginary parts of $\sin z$ and $\cosh 4$.

Ans:
$$\left(\frac{\pi}{2} + 2n\pi\right) \pm 4i \quad (n = 0, \pm 1, \pm 2, \dots).$$

Question 4.

Show that $|\sinh x| \le |\cosh z| \le \cosh x$ by using

- (a) the identity $|\cosh z|^2 = \sinh^2 x + \cos^2 y$;
- (b) the inequalities $|\sinh y| \le |\cos z| \le \cosh y$.

Question 5.

Locate all zeros and singularities of the hyperbolic tangent function.

Question 6.

Find all roots of the equation $\cosh z = -2$.

Ans:
$$\pm \ln(2 + \sqrt{3}) + (2n+1)\pi i$$
 $(n = 0, \pm 1, \pm 2, ...).$

Question 7.

Solve the equation $\sin z = 2$ for z by

- (a) equating real and imaginary parts in that equation;
- (b) using the expression $\sin^{-1} z = -i \log \left[i z + (1 z^2)^{1/2} \right]$.