

Math 309 - Spring-Summer 2017 Problem Set # 1

Completion Date: Friday May 12, 2017

Question 1.

Show that

(a) Re
$$(iz) = -\text{Im } z$$

(a)
$$\operatorname{Re}(iz) = -\operatorname{Im} z$$
; (b) $\operatorname{Im}(iz) = \operatorname{Re} z$.

Question 2.

Reduce the quantity $\frac{5i}{(1-i)(2-i)(3-i)}$ to a real number.

Question 3.

Reduce the quantity $(1-i)^4$ to a real number.

Question 4.

Verify that $\sqrt{2}|z| \ge |\text{Re } z| + |\text{Im } z|$.

Suggestion: Reduce this inequality to $(|x| - |y|)^2 \ge 0$.

Question 5.

In each case, sketch the set of points determined by the given condition:

(a)
$$|z-1+i|=1$$
; (b) $|z+i| \le 3$; (c) $|z-4i| \ge 4$.

(b)
$$|z+i| \le 3$$

(c)
$$|z - 4i| > 4$$
.

Question 6.

Use the properties of conjugates and modulii established in class to show that

(a)
$$\overline{\overline{z} + 3i} = z - 3i$$
 (b) $\overline{iz} = -i\overline{z}$;

(b)
$$\overline{iz} = -i \overline{z}$$
;

(c)
$$(2+i)^2 = 3-4i$$

(c)
$$\overline{(2+i)^2} = 3-4i;$$
 (d) $|(2\overline{z}+5)(\sqrt{2}-i)| = \sqrt{3}|2z+5|.$

Question 7.

Use established properties of moduli to show that when $|z_3| \neq |z_4|$,

$$\left| \frac{z_1 + z_2}{z_3 + z_4} \right| \le \frac{|z_1| + |z_2|}{||z_3| - |z_4||}.$$

Question 8.

Find the principal argument Arg z when $z = \frac{i}{-2 - 2i}$.

Ans.
$$-\frac{3\pi}{4}$$
.

Question 9.

Using the fact that the modulus $|e^{i\theta} - 1|$ is the distance between the points $e^{i\theta}$ and 1, give a geometric argument to find a value of θ in the interval $0 \le \theta < 2\pi$ that satisfies the equation $|e^{i\theta} - 1| = 2$.

Ans. π .

Question 10.

Establish the identity

$$1 + z + z^{2} + \dots + z^{n} = \frac{1 - z^{n+1}}{1 - z}$$
 $(z \neq 1)$

and then use it to derive Lagrange's trigonometric identity:

$$1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin [(2n+1)\theta/2]}{2\sin (\theta/2)} \qquad (0 < \theta < 2\pi).$$

Suggestion: As for the first identity, write $S=1+z+z^2+\cdots+z^n$ and consider the difference S-zS. To derive the second identity, write $z=e^{i\theta}$ in the first one.