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Mathematical Methods for Electrical Engineers

Solutions to Practice Problems for Final Examination

Completion Date: Tuesday August 15, 2017

Question 1.

(a) Using a purely geometric argument, show that

|z − 1| ≤
∣

∣|z| − 1
∣

∣+ |z| |arg(z)|

for all z ∈ C.

(b) Let ωn be the primitive nth root of unity given by e
2πi

n , n ≥ 2. Calculate

1 + 4ωn + 9ω2
n + · · ·+ n2ωn−1

n .

Solution:

(a) From the triangle inequality, we have

|z − 1| ≤
∣

∣|z| − 1
∣

∣+
∣

∣z − |z|
∣

∣,

but
∣

∣z − |z|
∣

∣ is the length of the chord joining the point z and |z|, while |z| · arg(z) is the length of the
circular arc from z to |z| and

∣

∣z − |z|
∣

∣ ≤ |z| · arg(z),
so that

|z − 1| ≤
∣

∣|z| − 1
∣

∣+ |z| · arg(z).

(b) Since n ≥ 1, then wn = e
2πi

n 6= 1, and since

0 = 1− wn
n = (1− wn)

(

1 + wn + w2
n + · · ·wn−1

n

)

then
1 + wn + w2

n + · · ·wn−1
n = 0.

Letting Tn = 1 + 2wn + 3w2
n + · · ·+ nwn−1

n , we have

(1− wn)Tn = 1 + wn + w2
n + · · ·+ wn−1

n − nwn
n = −n,

so that
1 + 2wn + 3w2

n + · · ·+ nwn−1
n = − n

1− wn
.

Now let Sn = 1 + 4wn + 9w2
n + · · ·+ n2wn−1

n , then

(1− wn)Sn = 1 + 3wn + 5w2
n + 7w3

n + · · ·+ (2n− 1)wn−1
n − n2

= 2 + 4wn + 6w2
n + 8w3

n + · · ·+ 2nwn−1
n − n2,

since 1 + wn + w2
n + · · ·wn−1

n = 0. Therefore,

(1− wn)Sn = 2
(

1 + 2wn + 3w2
n + · · ·+ nwn−1

n

)

− n2 = − 2n

1− wn
− n2,

so that

Sn = − 2n

(1− wn)2
− n2

1− wn
.



Question 2.

Let α, β ∈ C.

(a) Show that |α+ β |2 =
∣

∣1 + αβ
∣

∣

2 −
(

1− |α|2
) (

1− |β|2
)

.

(b) Show that if |α| ≤ 1 and |β| ≤ 1, then |α+ β | ≤
∣

∣1 + αβ
∣

∣ .

(c) When does equality hold in part (b) ?

Solution:

(a) For α, β ∈ C we have

|α+ β|2 = (α+ β)(α+ β) = |α|2 + αβ + αβ + |β|2,

also,

|1 + αβ|2 = (1 + αβ)(1 + αβ) = 1 + αβ + αβ + |α|2 |β|2,

so that
|α+ β|2 = |α|2 + |1 + αβ|2 − 1− |α|2 |β|2 + |β|2,

that is,

|α+ β|2 = |1 + αβ|2 − (1− |α|2)(1− |β|2). (∗)

(b) If |α| ≤ 1 and |β| ≤ 1, then
(1− |α|2)(1− |β|2) ≥ 0,

and therefore
|α+ β|2 ≤ |1 + αβ|2,

taking the nonnegative square root of both sides of this inequality we have

|α+ β| ≤ |1 + αβ|.

(c) From (∗), equality holds if and only if either |α| = 1 or |β| = 1.

Question 3.

Let α = m
n , where m and n are positive integers, and let zα = eα log z denote the multiple-valued αth power

function for z 6= 0.

(a) Show that the principal value of
(

z
1
n

)m
always gives the principal value of zα.

(b) Show that (zm)
1
n may not give the correct values of zα by calculating the principal values of

(

z2
)

1
2

(

z
1
2

)2
z1

for z = −1 + i.

(c) What, if anything, is wrong with the following?

1 =
√
1 =

√

(−1) · (−1) =
√
−1 ·

√
−1 = i · i = −1



Solution: Let α = m
n where m and n are positive integers, if z 6= 0, then the principal value of zα is

zα = eαLog z = eα[ln |z|+iArg(z),

that is,
zα = |z|α · eiαArg(z)

where |z| > 0 and −π < Arg(z) ≤ π.

(a) The principal value of z
1
n is

z
1
n = n

√

|z| · e
iArg(z)

n ,

and so the principal value of
(

z
1
n

)m
is

(

z
1
n

)m
=
(

n

√

|z|
)m

· eim

n
Arg(z) = |z|α · eiαArg(z)

where |z| > 0 and −π < Arg(z) ≤ π, which is exactly the same as the principal value of zα = eαLog z.

(b) If z = −1 + i, then z2 = (−1 + i)2 = 1− 2i− 1 = −2i, and the principal value of
(

z2
)

1
2 is

(

z2
)

1
2 =

√
2 · e− iπ

4 = 1− i.

If z = −1 + i, the principle value of z
1
2 is

z
1
2 =

4
√
2 · e i3π

8 ,

so that
(

z
1
2

)2
=

√
2 · e i3π

4 = −1 + i,

which is the same as z1 = −1 + i. Therefore, (z2)
1
2 6=

(

z
1
2

)2
.

(c) From the above, it is not true in general that (z2)
1
2 =

(

z
1
2

)2
, in particular,

√
1 =

√

(−1)(−1) 6=
√
−1 ·

√
−1 = i2 = −1.

Question 4.

Show that for each positive integer n ≥ 1, and for each real number α,

(1 + cosα+ i sinα)n = 2n cosn
α

2

(

cos
nα

2
+ i sin

nα

2

)

.

Solution: If n ≥ 1 and α is a real number, then

(1 + cosα+ i sinα)n =
(

2 cos2
α

2
+ 2i sin

α

2
cos

α

2

)n

= 2n cosn
α

2

(

cos
α

2
+ i sin

α

2

)n

= 2n cosn
α

2
·
(

e
iα
2
)n

= 2n cosn
α

2
· e

inα
2

= 2n cosn
α

2

(

cos
nα

2
+ i sin

nα

2

)

,

so that
(1 + cosα+ i sinα)n = 2n cosn

α

2

(

cos
nα

2
+ i sin

nα

2

)

.



Question 5.

Show that

sin
π

n
· sin 2π

n
· sin 3π

n
· · · sin (n− 1)π

n
=

n

2n−1

for n = 2, 3, . . . .

Solution: For n ≥ 2, the roots of the equation zn − 1 = 0 are

z0 = 1, z1 = e
2πi
n , z2 = e

4πi
n , . . . , zn−1 = e

2(n−1)πi
n ,

so that the expression zn − 1 factors as

zn − 1 = (z − 1)
(

z − e
2πi
n
)(

z − e
4πi
n
)

· · ·
(

z − e
2(n−1)πi

n
)

.

Now divide by z − 1 and let z → 1 to get

d

dz

(

zn
)

∣

∣

∣

∣

z=1

= n,

so that

n =
(

1− e
2πi
n
)(

1− e
4πi
n
)

· · ·
(

1− e
2(n−1)πi

n
)

. (∗)

Taking complex conjugates, we get

n = n =
(

1− e−
2πi
n
)(

1− e−
4πi
n
)

· · ·
(

1− e−
2(n−1)πi

n
)

. (∗∗)

Multiplying (∗) and (∗∗) we get

n2 = 2n−1

(

1− cos
2π

n

)(

1− cos
4π

n

)

· · ·
(

1− cos
2(n− 1)π

n

)

,

so that

n2 = 2n−1 · 2n−1 · sin2 π

n
· sin2 2π

n
· · · sin2 (n− 1)π

n
,

and taking nonnegative square roots

sin
π

n
· sin 2π

n
· sin 3π

n
· · · sin (n− 1)π

n
=

n

2n−1

for n = 2, 3, . . . .

Question 6.

Find all solutions to the differential equation

f ′′(z) + β2f(z) = 0

where f(z) is an entire function.

Hint : Write
f(z) = a0 + a1z + a2z

2 + a3z
3 + · · ·+ anz

n + · · ·
and solve for the coefficients a2, a3, . . . in terms of a0, a1 and β.

Solution: If f(z) is an entire function which is a solution to the differential equation, then f(z) has a
Maclaurin series expansion

f(z) = a0 + a1z + a2z
2 + a3z

3 + · · ·+ anz
n + · · ·



which is valid for all z ∈ C, and since f(z) satisfies the differential equation, then

f ′′(z) + β2f(z) =
∞
∑

n=2

n(n− 1)anz
n−2 + β2

∞
∑

n=1

anz
n = 0,

that is,
∞
∑

n=0

[

(n+ 2)(n+ 1)an+2 + β2an
]

zn = 0

for all z ∈ C.

Therefore (n+ 2)(n+ 1)an+2 + β2an = 0 for all n ≥ 0, and iterating, we have

a2 = −β2

2!
a0

a3 = −β2

3!
a1

a4 =
β4

4!
a0

a5 =
β4

5!
a1

...

and an easy induction argument shows that

a2n =
(−1)nβ2n

(2n)!
and a2n+1 =

(−1)nβ2n

(2n+ 1)!

for n ≥ 0.

If β 6= 0, the solution is

f(z) = a0

∞
∑

n=0

(−1)n

(2n)!
(βz)2n +

a1
β

∞
∑

n=0

(−1)n

(2n+ 1)!
(βz)2n+1 = a0 cosβz +

a1
β

sinβz

for z ∈ C.

If β = 0, the solution is
f(z) = a0 + a1z

for z ∈ C.

Question 7.

Which of the following functions is analytic and/or entire and where? (Give reasons for your answers.)

(a) f(z) = z5

(b) g(z) = z2

(c) h(z) =
1

1− cos z
.

Solution:

(a) f(z) = z5 is entire, since f ′(z) = 5z4 exists for all z ∈ C.



(b) g(z) = z 2 = u(x, y) + iv(x, y) where u(x, y) = x2 − y2, and v(x, y) = −2xy. Taking partial derivatives,
we have

∂u

∂x
= 2x,

∂v

∂y
= −2x,

and
∂u

∂y
= −2y,

∂v

∂x
= −2y,

so the partial derivatives exist and are continuous everywhere. However, the Cauchy-Riemann equa-
tions hold if and only if

2x = −2x

2y = −2y,

that is, if and only if x = y = 0. Therefore g′(z) exists if and only if z = 0, so that g(z) = z 2 is nowhere
analytic.

(c) h(z) =
1

1− cos z
is analytic at all z ∈ C for which cos z 6= 1.

Now cos z = 1 if and only if
(

eiz + e−iz
)

/2 = 1, that is, if and only if e2iz − 2eiz +1 = 0, that is, if and

only if
(

eiz−1
)2

= 0, that is, if and only if eiz = 1, that is, if and only if z = 2πn for n = 0,±1,±2, . . . .
Therefore, h(z) = 1/(1− cos z) is analytic except at the points z = ±2πn, n ∈ Z.

Question 8.

Compute

∮

C

f(z) dz where f(z) = x2 + i y2 for z = x + i y, and C is the boundary of the triangle with

vertices (0, 0), (1, 0), and (0, 1), and C is traversed in the positive direction.

Solution: We parametrize the contour C below as follows.

y

C

2C
3C

(0,0) (1,0)

(0,1)

x
1

On the horizontal line segement C1 joining the points (0, 0) and (1, 0), we have

z = t, 0 ≤ t ≤ 1.

On the line segment C2 joining the points (1, 0) and (0, 1), we have

z = (1− t) + it, 0 ≤ t ≤ 1.

On the line segment C3 joining the points (0, 1) and (0, 0), we have

z = i(1− t), 0 ≤ t ≤ 1.



Therefore,
∫

C1

f(z) dz =

∫ 1

0

[

x(t)2 + iy(t)2
]

[x′(t) + iy′(t)] dt =

∫ 1

0

t2 dt =
1

3

∫

C2

f(z) dz =

∫ 1

0

[

(1− t)2 + it2
]

[−1 + i] dt =
1

3
(1 + i)(−1 + i) = −2

3

∫

C3

f(z) dz =

∫ 1

0

i(1− t)2(−i)dt =
1

3

so that
∫

C

f(z) dz =

∫

C1

f(z) dz +

∫

C2

f(z) dz +

∫

C3

f(z) dz =
1

3
− 2

3
+

1

3
= 0.

Question 9.

Evaluate the contour integral

∫

C

z dz

where C is the square with vertices (0, 0), (1, 0), (1, 1), (0, 1) traversed in the counterclockwise direction.

(1,1)

1

C2

C3

C4

x

y

(0,0) (1,0)

(0,1)

C

Solution: We write C = C1 + C2 + C3 + C4 as shown in the figure above, then
∫

C

z dz =

∫

C1

z dz +

∫

C2

z dz +

∫

C3

z dz +

∫

C4

z dz.

On C1: We have z = t, 0 ≤ t ≤ 1, and z = t, so that
∫

C1

z dz =

∫ 1

0

t dt =
t2

2

∣

∣

∣

∣

1

0

=
1

2
.

On C2: We have z = 1 + it, 0 ≤ t ≤ 1, and z = 1− it, so that
∫

C2

z dz =

∫ 1

0

(1− it) idt = it

∣

∣

∣

∣

1

0

+
t2

2

∣

∣

∣

∣

1

0

= i+
1

2
.

On C3: We have z = t+ i, 0 ≤ t ≤ 1, and z = t− i, so that
∫

C3

z dz =

∫ 0

1

(t− i) dt = −
∫ 1

0

(t− i) dt = − t2

2

∣

∣

∣

∣

1

0

+ it

∣

∣

∣

∣

1

0

= −1

2
+ i.

On C4: We have z = it, 0 ≤ t ≤ 1, and z = −it, so that
∫

C4

z dz =

∫ 0

1

(−it) idt = −
∫ 1

0

(−it) idt = − t2

2

∣

∣

∣

∣

1

0

= −1

2
.

Therefore,
∫

C

z dz =
1

2
+ i+

1

2
− 1

2
+ i− 1

2
= 2i.



Question 10.

Let C be the boundary of the square with vertices at the points z = 0, z = 1, z = 1 + i,
z = i and with counterclockwise orientation. Evaluate

∮

C

z2 dz.

Solution: We write C = C1 + C2 + C3 + C4 as shown in the figure below, then
∫

C

z2 dz =

∫

C1

z2 dz +

∫

C2

z2 dz +

∫

C3

z2 dz +

∫

C4

z2 dz.

(1,1)

1

C2

C3

C4

x

y

(0,0) (1,0)

(0,1)

C

On C1: We have z = t, 0 ≤ t ≤ 1, and z2 = t2, so that

∫

C1

z2 dz =

∫ 1

0

t2 dt =
t3

3

∣

∣

∣

∣

1

0

=
1

3
.

On C2: We have z = 1 + it, 0 ≤ t ≤ 1, and z2 = (1− it)2 = (1− t2)− 2it, so that

∫

C2

z2 dz = i

∫ 1

0

(1− t2) dt+ 2

∫ 1

0

t dt = i

(

t− t3

3

)
∣

∣

∣

∣

1

0

+
2t2

2

∣

∣

∣

∣

1

0

=
2i

3
+ 1.

On C3: We have z = t+ i, 0 ≤ t ≤ 1, and z2 = (t− i)2 = (t2 − 1)− 2it, so that

∫

C3

z2 dz =

∫ 0

1

(t2 − 1) dt− 2i

∫ 0

1

t dt =

∫ 1

0

(1− t2) dt+ 2i

∫ 1

0

t dt =

(

t− t3

3

) ∣

∣

∣

∣

1

0

+ 2i
t2

2

∣

∣

∣

∣

1

0

=
2

3
+ i.

On C4: We have z = it, 0 ≤ t ≤ 1, and z2 = (−it)2 = −t2, so that

∫

C4

z2 dz =

∫ 0

1

(−t2) idt = i

∫ 1

0

t2 dt = i
t3

3

∣

∣

∣

∣

1

0

=
i

3
.

Therefore,
∮

C

z2 dz =
1

3
+

2i

3
+ 1 +

2

3
+ i+

i

3
= 2 + 2i.

Question 11.

Evaluate
∮

|z|=1

Log(z + 2)

z2
dz.

(the circle |z| = 1 is oriented counterclockwise)



Solution: The function Log(z + 2) is analytic at each point in C except on the portion of the real axis
where x ≤ −2. The integrand

f(z) =
Log(z + 2)

z2
,

is analytic on and interior to the circle |z| = 1, except at the point z = 0, where it has a pole of order two
with residue

B = lim
z→0

d

dz

[

z2f(z)
]

= lim
z→0

d

dz
[Log(z + 2)] = lim

z→0

1

z + 2
=

1

2
.

From the Cauchy residue theorem, we have

∮

|z|=1

Log(z + 2)

z2
dz = 2πi · 1

2
= πi.

Question 12.

Evaluate
∮

|z|=2

tan (z/2)

(z − 1)2
dz.

(the circle |z| = 2 is oriented counterclockwise)

Solution: The function

tan (z/2) =
sin (z/2)

cos (z/2)

is analytic everwhere except at the isolated zeros of cos (z/2) , that is, at the points

z

2
=

(

n+
1

2

)

π, n = ±1, ±2, ±3, ṡ

or
z = (2n+ 1)π, n = ±1, ±2, ±3, . . . ,

all of which lie outside the circle |z| = 2.

Therefore, the function
tan (z/2)

(z − 1)2

is analytic everywhere on and inside the circle |z| = 2, except at the point z = 1, where it has a double pole
with residue

B = lim
z→1

d

dz

[

(z − 1)2f(z)
]

= lim
z→1

d

dz
[tan(z/2)] = lim

z→1

1

2
sec2(z/2) =

1

2
sec2(1/2).

From the Cauchy residue theorem, we have

∮

|z|=2

tan (z/2)

(z − 1)2
dz = πi sec2(1/2).

Question 13.

Evaluate
∫ 3+i

i

(z − 1)3 dz.



Solution: The function
f(z) = (z − 1)3

is entire, and has an antiderivative

F (z) =
(z − 1)4

4
,

and
∫ 3+i

i

(z − 1)3 dz = F (3 + i)− F (i) =
1

4

[

(2 + i)4 − (1− i)4
]

.

Question 14.

(a) Given functions u(x, y) and v(x, y) state sufficient conditions (on the partial derivatives) for

f(z) = u(x, y) + iv(x, y)

to be analytic at a point z0.

(b) State the Cauchy Integral Formula.

Solution:

(a) The function f(z) = u(x, y) + iv(x, y) is differentiable at the point z0 = x0 + iy0 if the first-order
partial derivatives of u and v exist at each point of a neighborhood of the point (x0, y0), are continuous
at the point (x0, y0), and satisfy the Cauchy-Riemann equations

ux = vy and uy = −vx

at the point (x0, y0).

However, the question asks for a sufficient condition for the function f(z) to be analytic at the point
z0, and for this the derivative of f(z) must exist at each point of a neighborhood of z0. Therefore, a
sufficient condition for f(z) to be analytic at a point z0 is that the first-order partial derivatives exist
and are continuous throughout a neighborhood of (x0, y0), and satisfy the Cauchy-Riemann equations
at each point in that neighborhood.

(b) The Cauchy Integral Formula states that

If the function f(z) is analytic everywhere inside and on a positively oriented simple closed contour
C, and if z0 is any point interior to C, then

f(z0) =
1

2πi

∫

C

f(z)

z − z0
dz.

Question 15.

Obtain the first four (4) non-zero terms of the Laurent series expansion of the function

f(z) =
1

ez − 1
,

valid in the domain 0 < |z| < 2π.

Solution: The function

f(z) =
1

ez − 1

has a simple pole at the point z0 = 0, since

g(z) = ez − 1 = z

(

1 +
1

2!
z +

1

3!
z2 +

1

4!
z3 + · · ·

)

has a zero of order 1 at z0 = 0.



The residue of f(z) at z0 = 0 is

Res
z=0

(f(z)) = lim
z→0

z

ez − 1
=

1

lim
z→0

(

ez − e0

z − 0

) = 1

since the limit is just the reciprocal of the derivative of ez evaluated at z = 0.

Suppose that the Laurent series expansion of f(z) is

f(z) =
1

z
+ a0 + a1z + a2z

2 + a3z
3 + a4z

4 + · · ·

valid for 0 < |z| < 2π, then since f(z) · (ez − 1) = 1, we have
(

1

z
+

∞
∑

n=0

anz
n

)

·
(

∞
∑

n=1

zn

)

= 1,

that is,
(

1 +

∞
∑

n=0

anz
n+1

)

·
(

∞
∑

n=1

zn

)

= z

for 0 < |z| < 2π.

Therefore,
(

1 + a0z + a1z
2 + a2z

3 + a4z
4 + · · ·

)

(

z +
1

2!
z2 +

1

3!
z3 +

1

4!
z4 + · · ·

)

= z,

and collecting terms that multiply zk, for k = 1, 2, 3, 4, we have

z +

(

a0 +
1

2!

)

z2 +

(

a1 +
a0
2!

+
1

3!

)

z3 +

(

a2 +
a1
2!

+
a0
3!

+
1

4!

)

z4 +

(

a3 +
a2
2!

+
a1
3!

+
a0
4!

+
1

5!

)

z5 · · · = z,

so that

a0 +
1

2!
= 0

a1 +
a0
2!

+
1

3!
= 0

a2 +
a1
2!

+
a0
3!

+
1

4!
= 0

a3 +
a2
2!

+
a1
3!

+
a0
4!

+
1

5!
= 0,

from which we can easily solve for a0, a1, a2, a3.

Question 16.

Let f(z) =
1

q(z)2
where q(z) is analytic at z0, q(z0) = 0, and q′(z0) 6= 0.

Show that z0 is a pole of order m = 2 of the function f(z) with residue

b1 = − q′′(z0)

q′(z0)3
.

Solution: Note first that z0 is a zero of order m = 1 of the function q(z), so that

q(z) = (z − z0)g(z)

where g(z) is analytic at z0 and g(z0) 6= 0.



Then we can write

f(z) =
ϕ(z)

(z − z0)2
,

where ϕ(z) = 1/g(z)2 is analytic at z0 and ϕ(z0) 6= 0. Therefore, z0 is a pole of order m = 2 of the function
f(z).

Now,
d

dz

[

(z − z0)
2f(z)

]

= ϕ′(z) = −2g′(z)

g(z)3
,

and

Res
z=z0

f(z) = lim
z→z0

d

dz

[

(z − z0)
2f(z)

]

= −2g′(z0)

g(z0)3
= − q′′(z0)

q′(z0)3
, (∗)

since
q′(z) = g(z) + (z − z0)g

′(z)

so that
q′′(z) = 2g′(z) + (z − z0)g

′′(z).

Therefore, q′′(z0) = 2g′(z0) and q′(z0) = g(z0), from which (∗) follows.

Question 17.

Obtain the expansion of the function

f(z) =
z2 + z + 1

z3

into its Laurent series, valid in the domain 0 < |z| < ∞.

Solution: We have

f(z) =
(

z2 + z + 1
)

· 1

z3
=

1

z
+

1

z2
+

1

z3

for |z| > 0, and this is the Laurent series expansion for f(z) in the domain 0 < |z| < ∞.

Question 18.

Using residues, show that
∫ ∞

−∞

x2

(x2 + 1)2
dx =

π

2
.

Solution: Let f(z) =
z2

(1 + z2)2
, and for R > 1, consider the integral of f over the contour CR shown

below.

y

R

−R R0 x

i

C

We have
∫

CR

z2dz

(1 + z2)2
+

∫ R

−R

x2dx

(1 + x2)2
= 2πiRes

z=i

(

z2

(1 + z2)2

)

.

Now,

f(z) =
z2

(1 + z2)2
=

Φ(z)

(z − i)2



where Φ(z) =
z2

(z + i)2
is analytic at z = i and Φ(i) =

1

4
6= 0, so that f has a pole of order m = 2 at z = i,

with

Res
z=i

(f(z)) = Φ′(i) =
2z

(z + i)2

∣

∣

∣

∣

z=i

− 2z2

(z + i)3

∣

∣

∣

∣

z=i

=
2i

(2i)2
+

2

(2i)3
= − 2

(2i)3
= − i

4
.

Therefore,

∫

CR

z2dz

(1 + z2)2
+

∫ R

−R

x2dx

(1 + x2)2
= 2πi

(

− i

4

)

=
π

2
(∗)

However, on CR, we have z = Reiθ, and

|1 + z2|2 ≥
(

|z|2 − 1
)2 ≥ (R2 − 1)2

if R > 1, so that
∣

∣

∣

∣

∫

CR

z2dz

(1 + z2)2

∣

∣

∣

∣

≤ R2 · 2πR
(R2 − 1)2

→ 0

as R → ∞.

Letting R → ∞ in (∗), we have
∫ ∞

−∞

x2 dx

(1 + x2)2
=

π

2
.

Question 19.

(a) State the Cauchy integral formula for the nth derivative f (n)(z0) of a function f(z) which is analytic
everywhere inside and on a simple closed contour C (described in the positive sense) and z0 is any
point interior to C.

(b) Use the Cauchy integral formula to evaluate the integral

∫

|z|=1

sin z

z8
dz

where the circle |z| = 1 is traversed in the counterclockwise direction.

Solution:

(a) The Cauchy integral formula for derivatives states that if f(z) is analytic everywhere inside and on a
simple closed positively oriented contour C, and z0 is any point interior to c, then

f (n)(z0) =
n!

2πi

∮

C

f(z)

(z − z0)n+1
dz.

(b) If we take f(z) = sin z, and C : |z| = 1, then the Cauchy integral formula with z0 = 0 and n = 7 says
that

7!

2πi

∫

|z|=1

sin z

z8
dz =

d7 sin z

dz7

∣

∣

∣

∣

z=0

= − cos 0 = −1,

and
∫

|z|=1

sin z

z8
dz = −2πi

7!

where the circle |z| = 1 is traversed in the counterclockwise direction.



Question 20.

Find the Laurent series expansion of the function

f(z) =
z

z2 − 1
=

1

2

(

1

z − 1
+

1

z + 1

)

valid on the following annular domains.

(a) 0 < |z − 1| < 2.

(b) 0 < |z + 1| < 2.

Solution:

(a) We expand the function in a Laurent series expansion about the point z0 = 1 :

z

z2 − 1
=

1

2

(

1

z − 1
+

1

z + 1

)

=
1

2

1

z − 1
+

1

2

1

z − 1 + 2

=
1

2

1

z − 1
+

1

4

1

1 +
z − 1

2

=
1

2

1

z − 1
+

1

4

[

1− (z − 1)

2
+

(z − 1)2

22
− (z − 1)3

23
+ · · ·

]

so that
z

z2 − 1
=

1

2

1

z − 1
+

∞
∑

n=0

(−1)n

2n+2
(z − 1)n

valid for 0 < |z − 1| < 2.

(b) We expand the function in a Laurent series expansion about the point z0 = −1 :

z

z2 − 1
=

1

2

(

1

z + 1
+

1

z − 1

)

=
1

2

1

z + 1
+

1

2

1

z + 1− 2

=
1

2

1

z + 1
− 1

4

1

1− z + 1

2

=
1

2

1

z + 1
− 1

4

[

1 +
(z + 1)

2
+

(z + 1)2

22
+

(z + 1)3

23
+ · · ·

]

so that
z

z2 − 1
=

1

2

1

z + 1
−

∞
∑

n=0

1

2n+2
(z + 1)n

valid for 0 < |z + 1| < 2.



Question 21.

Find and classify (according to the terms pole, removable, essential ) the singular points of

f(z) =
z

1− cos z
.

For each pole, give its order and compute the residue there.

Solution: Note that f(z) =
z

1− cos z
has isolated singular points at z = 2πn, n ∈ Z, and that for

n = 0, ±1, ±2, . . . , we have
cos(z − 2πn) = cos z,

so that if g(z) = 1− cos z, then

g(z) = 1− cos(z − 2πn) = 1−
∞
∑

k=0

(−1)k(z − 2πn)2k

(2k)!
,

that is,

g(z) = (z − 2πn)2 ·
∞
∑

k=1

(−1)k−1(z − 2πn)2(k−1)

(2k)!
= (z − 2πn)2 · φ(z),

where

φ(z) =

∞
∑

k=1

(−1)k−1(z − 2πn)2(k−1)

(2k)!

is analytic at z = 2πn and φ(2πn) = 1 6= 0.

Therefore, g(z) = 1− cos z has a zero of order 2 at z = 2πn for n = 0, ±1, ±2, . . . , and so

f(z) =
z

1− cos z

has a simple pole at z = 0, and a pole of order 2 at z = 2πn for n = ±1, ±2, . . . .

For the simple pole at z = 0,

f(z) =
z

1− cos z
=

1

z
· 1

1
2! − 1

4!z
2 + · · · =

Φ0(z)

z
,

and Res
z=0

(

z

1− cos z

)

= 2.

For the pole of order 2 at z = 2πn,

f(z) =
z

1− cos(z − 2πn)
=

1

(z − 2πn)2
· z

1
2! − 1

4! (z − 2πn)2 + · · · =
Φ1(z)

(z − 2πn)2
,

and

Res
z=2πn

(

z

1− cos z

)

= lim
z→2nπ

1

1!
· d

dz

[

(z − 2nπ)2f(z)
]

=
Φ′

1(2πn)

1!
= 2

for n = ±1, ±2, . . . .

Question 22.

Find the Laurent expansion of f(z) =
z

(z − 1)(z − 2)
valid in the domain

(a) 0 < |z − 1| < 1,

(b) 0 < |z − 2| < 1,

(c) 1 < |z| < 2.



Solution: Note that

f(z) =
z

(z − 1)(z − 2)
=

2

z − 2
− 1

z − 1

for z 6= 1, 2.

(a) For 0 < |z − 1| < 1, we have

1

z − 2
= − 1

1− (z − 1)
= −

∞
∑

n=0

(z − 1)n,

so that

f(z) = − 1

z − 1
− 2

∞
∑

n=0

(z − 1)n,

valid for 0 < |z − 1| < 1.

(b) For 0 < |z − 2| < 1, we have

1

z − 1
=

1

1 + (z − 2)
=

∞
∑

n=0

(−1)n(z − 2)n,

so that

f(z) =
2

z − 2
−

∞
∑

n=0

(−1)n(z − 2)n,

valid for 0 < |z − 2| < 1.

(c) For 1 < |z| < 2, we have

f(z) =
2

z − 2
− 1

z − 1
= − 1

1− z/2
− 1

z
· 1

1− 1/z
,

and

f(z) = −
∞
∑

n=0

zn

2n
−

∞
∑

n=0

1

zn+1
= −

∞
∑

n=0

zn

2n
−

∞
∑

n=1

1

zn
,

valid for 1 < |z| < 2.

Question 23.

For n = 1, 2, . . . find the 2nth derivatives of

f(z) = sin
(

z2
)

at z = 0 by using the Cauchy integral formula for derivatives.



Solution: We have

f(z) = sin(z2) =

∞
∑

k=0

(−1)k(z2)2k+1

(2k + 1)!
=

∞
∑

k=0

(−1)kz4k+2

(2k + 1)!
,

valid for all z ∈ C, and from the Cauchy integral formula,

f (2n)(0) =
(2n)!

2πi

∮

|z|=1

sin(z2)

z2n+1
dz = (2n)! · Res

z=0

(

sin(z2)

z2n+1

)

.

If n is even, then 2n = 4m for some integer m ≥ 0, and

sin(z2)

z4m+1
=

∞
∑

k=0

(−1)k

(2k + 1)!
z4(k−m)+1,

so that Res
z=0

(

sin(z2)

z4m+1

)

= 0, and f (4m)(0) = 0.

If n is odd, then 2n = 4m+ 2 for some integer m ≥ 0, and

sin(z2)

z4m+3
=

∞
∑

k=0

(−1)k

(2k + 1)!
z4(k−m)−1,

so that Res
z=0

(

sin(z2)

z4m+3

)

=
(−1)m

(2m+ 1)!
, and f (4m+2)(0) =

(−1)m · (4m+ 2)!

(2m+ 1)!
.

Question 24.

(a) Show that

cos θ > 1− 2

π
θ

for 0 < θ <
π

2
.

Hint : Look at the graphs of y = cos θ and y = 1− 2

π
θ on the interval 0 < θ <

π

2
.

(b) From part (a), show that
∫

π
2

0

e−R cos θ dθ <
π

2R

(

1− e−R
)

for R > 0.

Solution:

(a) Define the function

f(θ) = cos θ −
(

1− 2

π
θ

)

for 0 < θ <
π

2
, then

f ′(θ) = − sin θ +
2

π
and f ′′(θ) = − cos θ

so that f ′′(θ) < 0 for 0 < θ <
π

2
.



Since
f(0) = 0 and f

(π

2

)

= 0,

and f is strictly concave downward on the interval, then

f(x) = cos θ −
(

1− 2

π
θ

)

> 0

for all 0 < θ <
π

2
.

(b) For R > 0, we have

e−R cos θ < e
−R

“

1−
2
π θ

”

,

and therefore

∫

π
2

0

e−R cos θ dθ <

∫

π
2

0

e
−R

“

1−
2
π θ

”

dθ = e−R

∫

π
2

0

e
2R
π θ dθ = e−R π

2R
e
2R
π θ

∣

∣

∣

∣

π
2

0

= e−R π

2R

(

eR − 1
)

,

that is,
∫

π
2

0

e−R cos θ dθ <
π

2R

(

1− e−R
)

.

Question 25.

(a) Show that the function

f(z) =







Log(z + 1)

z
, for 0 < |z| < 1

1, for z = 0

is analytic at z = 0.

(b) Find a formula for the derivatives f (n)(0).

Solution:

(a) Let g(z) = Log(z + 1), then g(z) is analytic at all z for which

z + 1 = ρeiφ, ρ > 0, −π < φ < π.

In particular, g(z) is analytic in the disk |z| < 1, with

g′(z) =
1

z + 1
=

∞
∑

n=0

(−1)nzn

for |z| < 1.

If |z| < 1 and C is any contour joining 0 to z which lies entirely inside the disk, then

Log(z + 1)− Log(1) =

∞
∑

n=0

(−1)nzn+1

n+ 1
,

that is,

Log(z + 1) =

∞
∑

n=0

(−1)nzn+1

n+ 1

for |z| < 1, and therefore

Log(z + 1)

z
=

∞
∑

n=0

(−1)nzn

n+ 1
,

for 0 < |z| < 1.



However, the series on the right-hand side converges to 1 for z = 0, so that if we define

f(z) =







Log(z + 1)

z
, for 0 < |z| < 1

1, for z = 0

then

f(z) =
∞
∑

n=0

(−1)nzn

n+ 1

for |z| < 1, and therefore f is analytic at z = 0.

(b) Since

f(z) =

∞
∑

n=0

(−1)nzn

n+ 1

for |z| < 1, then this is the Maclaurin series expansion for f(z), and therefore

f (n)(0)

n!
=

(−1)n

n+ 1
,

that is,

f (n)(0) =
(−1)n · n!
n+ 1

for n ≥ 0.

Question 26.

Using Cauchy’s residue theorem, show that

∫ ∞

0

cos ax

x2 + 1
dx =

π

2
e−a

for a > 0.

Solution: Consider the integral

∮

ΓR

eiaz

z2 + 1
dz where ΓR is the contour shown below, traversed in the

counterclockwise direction.

y

RΓR

−R R0 x

i
C

For R > 1, the integrand f(z) =
eiaz

z2 + 1
has a simple pole at z0 = i inside the contour ΓR with residue

Res
z=z0

f(z) =
e−a

2i
,

and from the Cauchy residue theorem

∮

ΓR

eiaz

z2 + 1
dz =

∫ 0

−R

eiax

x2 + 1
dx+

∫ R

0

eiax

x2 + 1
dx+

∫

CR

eiaz

z2 + 1
dz = π e−a,

that is,
∫ R

0

e−iax

x2 + 1
dx+

∫ R

0

eiax

x2 + 1
dx+

∫

CR

eiaz

z2 + 1
dz = π e−a,



so that

2

∫ R

0

cos ax

x2 + 1
dx+

∫

CR

eiaz

z2 + 1
dz = π e−a. (∗∗)

Now, on CR we have
∣

∣eiaz
∣

∣ = e−ay ≤ 1

since a > 0 and y ≥ 0, and from the triangle inequality

|z2 + 1| ≥ |z|2 − 1 = R2 − 1

for all z ∈ CR, so that
∣

∣

∣

∣

∫

CR

eiaz

z2 + 1
dz

∣

∣

∣

∣

≤ πR

R2 − 1
−→ 0

as R → ∞.

Letting R → ∞ in (∗∗) we get

2

∫ ∞

0

cos ax

x2 + 1
dx = π e−a,

or
∫ ∞

0

cos ax

x2 + 1
dx =

π

2
e−a.

Question 27.

Evaluate

∮

|z|=7

1 + z

1− cos z
dz.

Solution: The function f(z) =
1 + z

1− cos z
has a pole of order 2 at z = 2πn, n = 0, ±1, ±2, . . . , and since

cos(z − 2πn) = cos z,

we can write

f(z) =
1 + z

1− cos z
=

φ(z)

(z − 2πn)2
,

where

φ(z) =
z + 1

1
2! − 1

4! (z − 2πn)2 + · · ·

is analytic at z = 2πn, and φ(2πn) =
2πn+ 1

1
2!

6= 0.

Now,

Res
z=2πn

(

z + 1

1− cos z

)

=
φ′(2πn)

1!
=

1 ·
{

1
2! − 1

4! (z − 2πn)2 + · · ·
}

− (z + 1) · {−2(z−2πn)
4! + · · · }

{

1
2! − 1

4! (z − 2πn)2 + · · ·
}2

∣

∣

∣

∣

z=2πn

,

so that

Res
z=2πn

(

z + 1

1− cos z

)

=
1
2!

(

1
2!

)2 = 2

for n = 0, ±1, ±2, . . . .

The only singular points inside the contour |z| = 7 are z = 2πn for n = 0,±1, and therefore
∮

|z|=7

z + 1

1− cos z
dz = 2πi{2 + 2 + 2} = 12πi.



Question 28.

Show that

∮

|z|=1

Log(z + 2)

z
dz = 2πi ln 2.

Solution: Let Φ(z) = Log(z + 2), then Φ(z) is analytic for all z with

z + 2 = ρeiφ, ρ > 0, −π < φ < π.

In particular, Φ(z) is analytic for |z| < 1, with Φ(0) = Log(2) = ln 2 6= 0, and therefore

f(z) =
Log(z + 2)

z
=

Φ(z)

z

has a simple pole at z = 0 with

Res
z=0

(

Log(z + 2)

z

)

= Φ(0) = ln 2,

and therefore
∮

|z|=1

Log(z + 2)

z
dz = 2πi ln 2.

Question 29.

Show that

∮

|z|=1

e(z+
1
z ) dz = 2πi

∞
∑

k=0

1

k!(k + 1)!
.

Solution: We have

f(z) = e(z+
1
z ) = ez · e

1
z =

(

1 +
1

1!
z +

1

2!
z2 +

1

3!
z3 + · · ·

)(

1 +
1

1!

1

z
+

1

2!

1

z2
+

1

3!

1

z3
+ · · ·

)

for 0 < |z| < ∞.

To find Res
z=0

(

ez+
1
z
)

we collect terms that multiply
1

z
, and we get

Res
z=0

(

ez+
1
z
)

=
1

1!
+

1

1! · 2! +
1

2! · 3! +
1

3! · 4! + · · · ,

that is,

Res
z=0

(

ez+
1
z
)

=

∞
∑

k=0

1

k!(k + 1)!
,

and therefore
∮

|z|=1

e(z+
1
z ) dz = 2πi

∞
∑

k=0

1

k!(k + 1)!
.



Question 30.

Let 1, ω, and ω2 be the three cube roots of 1, and let

f(z) = cos(z) · cos(ωz) · cos(ω2z).

Clearly, f(z) is an entire function.

(a) Show that
f(z) = f(ωz) = f(ω2z).

(b) Show that
3f(z) = f(z) + f(ωz) + f(ω2z).

(c) Show that the Maclaurin series of f has nonzero coefficients an only when n is a multiple of 3.

Solution:

(a) We have
f(ωz) = cos(ωz) · cos(ω2z) · cos(ω3z),

and since ω3 = 1, then
f(ωz) = cos(ωz) · cos(ω2z) · cos(z) = f(z).

Similarly,
f(ω2z) = cos(ω2z) · cos(ω3z) · cos(ω4z),

and since ω3 = 1, and ω4 = ω, then

f(ω2z) = cos(ω2z) · cos(z) · cos(ωz) = f(z).

(b) Therefore,
3f(z) = f(z) + f(ωz) + f(ω2z)

for all z ∈ C.

(c) Since the function f(z) is entire, it has a Maclaurin series expansion that converges for all z ∈ C, and
we can write

f(z) = a0 + a1z + a2z
2 + · · ·+ anz

n + · · · =
∞
∑

n=0

anz
n,

and from part (b),

3f(z) =

∞
∑

n=0

anz
n +

∞
∑

n=0

anω
nzn +

∞
∑

n=0

anω
2nzn,

that is,

3f(z) =

∞
∑

n=0

(

1 + ωn + ω2n
)

anz
n.

Now, if n = 3k, where k is a nonnegative integer, then

1 + ωn + ω2n = 1 + (ω3)k + (ω3)2k = 1 + 1 + 1 = 3 6= 0.

If n = 3k + 1, where k is a nonnegative integer, then

1 + ωn + ω2n = 1 + (ω3)k · ω + (ω3)2k · ω2 = 1 + ω + ω2 = 0.

If n = 3k + 2, where k is a nonnegative integer, then

1 + ωn + ω2n = 1 + (ω3)k · ω2 + (ω3)2k · ω4 = 1 + (ω3)k · ω2 + (ω3)2k · ω = 1 + ω2 + ω = 0.

Therefore, the Maclaurin series for f has nonzero coefficents only if n is a multiple of 3.



Question 31.

If p and q are real numbers with p > q > 0, show that

∫ 2π

0

dθ

(p+ q cos θ)2
=

2πp

(p2 − q2)
3
2

.

Solution: We make the substitution z = eiθ, and convert the integral into a contour integral around the
unit circle |z| = 1.

I =

∫ 2π

0

dθ

(p+ q cos θ)2
=

∮

|z|=1

dz

iz{p+ q
2

(

z + 1
z

)

}2 = −i

∮

|z|=1

z dz

{ q
2z

2 + pz + q
2}2

.

The integrand in the integral on the right has poles of order 2 at each of the points

z1 =
1

q

[

−p+
√

p2 − q2
]

and z2 =
1

q

[

−p−
√

p2 − q2
]

.

Since we assumed that p > q > 0, the pole z2 lies outside the unit circle. And since

q

2
z2 + pz +

q

2
=

q

2
(z − z1)(z − z2),

the product of the roots is 1, so that the pole z1 lies inside the unit circle.

The residue b1 of the pole of order 2 at the pole z1 is given by

b1 = lim
z→z1

[

d

dz

{

z(z − z1)
2

(q2/4)(z − z1)2(z − z2)2

}]

=
4

q2

[

d

dz

z

(z − z2)2

]

z=z1

= − 4

q2
z1 + z2

(z1 − z2)3

=
p

(p2 − q2)3/2
.

Therefore, by Cauchy’s Residue Theorem, we have

∫ 2π

0

dθ

(p+ q cos θ)2
= −i2πib1 =

2πp

(p2 − q2)3/2

for p > q > 0.

Question 32. Evaluate the integral

I =

∫ ∞

0

cos ax− cos bx

x2
dx

where a and b are nonnegative real numbers. Integrals of this type are called Frullani integrals.

Note: The integral I cannot be represented as the difference of the integrals

∫ ∞

0

cos ax

x2
dx and

∫ ∞

0

cos bx

x2
dx,

since both these integrals diverge.



To see this, since cos ax → 1 as x → 0+, there is a positive number η such that | cos ax| ≥ 1/2 for 0 < x < η,
and therefore

∫ η

ǫ

cos ax

x2
dx ≥

∫ η

ǫ

1

2x2
dx =

1

2ǫ
− 1

2η

whenever 0 < ǫ < η. Therefore, if we break the range of integration at η,
∫ ∞

ǫ

cos ax

x2
dx =

∫ η

ǫ

cos ax

x2
dx+

∫ ∞

η

cos ax

x2
dx, (∗)

but

lim
ǫ→0+

∫ η

ǫ

cos ax

x2
dx = +∞

so that the improper integral
∫ ∞

0

cos ax

x2
dx

diverges (it converges if and only if both integrals on the right-hand side of (∗) converge).

Solution: We consider the function

f(z) =
eiaz − eibz

z2

and take the integral of f(z) over the indented contour shown below.
y

CR

Cr

−r r R−R
x

We get
∫ −r

−R

f(x) dx+

∫

Cr

f(z) dz +

∫ R

r

f(z) dz +

∫

CR

f(z) dz = 0. (∗∗)

Along CR, we have
|eiaz| = e−ay ≤ 1 and |eibz| = e−by ≤ 1,

since a ≥ 0 and b ≥ 0, and therefore

|f(z)| ≤ 2

R2

for all z on CR, so that
∣

∣

∣

∣

∫

CR

f(z) dz

∣

∣

∣

∣

≤ 2

R2
· πR −→ 0

as R → ∞.

To find a bound for the integral along Cr, we look at the Laurent expansion of f(z) about 0 valid for
0 < |z| < ∞. We have

f(z) =
1

z2

{

i(a− b)z +
(iaz)2 − (ibz)2

2!
+ · · ·

}

=
i(a− b)

z
+ P (z),

where P (z) is analytic at z = 0. Integrating over the semicircle Cr, we have
∫

Cr

f(z) dz = i(a− b)

∫

Cr

dz

z
+

∫

Cr

P (z) dz

and hence,

lim
r→0+

∫

Cr

f(z) dz = lim
r→0+

∫

Cr

dz

z
+ lim

r→0+

∫

Cr

P (z) dz.



Now, P (z) is analytic at 0 and so is bounded in a neighborhood of z = 0, say |P (z)| ≤ M for all z with
|z| < ǫ, so by the M L Theorem,

∣

∣

∣

∣

∫

Cr

P (z) dz

∣

∣

∣

∣

≤ M · πr,

for r < ǫ. Therefore the integral of P (z) over Cr goes to 0 as r → 0+.

If we parametrize Cr as z = reiθ for 0 ≤ θ ≤ π, then we have
∫

Cr

1

z
dz =

∫ 0

π

ireiθ

reiθ
dθ == −

∫ π

0

i dθ = −πi,

so that

lim
r→0+

∫

Cr

f(z) dz = i(a− b)(−πi) = (a− b)π.

Equating real and imaginary parts in (∗∗), and letting r → 0+ and R → ∞, we have
∫ ∞

−∞

cos ax− cos bx

x2
dx+ (a− b)π = 0.

Since the integrand is an even function, this implies that
∫ ∞

0

cos ax− cos bx

x2
dx =

b− a

2
π.

Question 33.

Find the inverse Laplace transform of the function

F (s) =
1

(s2 + a2)(s2 + b2)
,

where a and b are real numbers, and a 6= b. What happens if a = b?

Solution: The function F (s) =
1

(s2 + a2)(s2 + b2)
has simple poles at s1 = ai, s2 = −ai, s3 = bi, and

s4 = −bi, and the inverse Laplace transform is

1

2πi

∫ γ+i∞

γ−i∞

est

(s2 + a2)(s2 + b2)
ds =

4
∑

k=1

Res
s=sk

[

est

(s2 + a2)(s2 + b2)

]

,

where γ > max{|s1|, |s2|, |s3|, |s4|}.

Now,

Res
s=ai

[

est

(s2 + a2)(s2 + b2)

]

= lim
s→ai

est

(s+ ai)(s2 + b2)
=

eait

2ai(b2 − a2)
,

and

Res
s=−ai

[

est

(s2 + a2)(s2 + b2)

]

= lim
s→−ai

est

(s− ai)(s2 + b2)
=

−e−ait

2ai(b2 − a2)
,

and

Res
s=bi

[

est

(s2 + a2)(s2 + b2)

]

= lim
s→bi

est

(s2 + a2)(s+ bi)
=

ebit

2bi(a2 − b2)
,

and

Res
s=−bi

[

est

(s2 + a2)(s2 + b2)

]

= lim
s→−bi

est

(s2 + a2)(s− bi)
=

−e−bit

2bi(a2 − b2)
.

Therefore, if a 6= b, then

f(t) =
1

b2 − a2

[

sin at

a
− sin bt

b

]

(∗)

for t > 0.



If a = b, then F (s) becomes

F (s) =
1

(s2 + a2)2
=

1

(s− ai)2(s+ ia)2
,

which has a pole of order m = 2 at s = ai and a pole of order 2 at s = −ai.

For s = ai, the residue of estF (s) is given by

Res
s=ai

(estF (s)) = lim
s→ai

d

ds

[

est

(s+ ai)2

]

= lim
s→ai

[

test

(s+ ai)2
− 2est

(s+ ia)3

]

= − teait

4a2
+

2eait

8a3i
,

and

Res
s=ai

(estF (s)) = − teait

4a2
+

eait

4a3i
.

For s = −ai, the residue of of estF (s) is given by

Res
s=−ai

(estF (s)) = lim
s→−ai

d

ds

[

est

(s− ai)2

]

= lim
s→−ai

[

test

(s− ai)2
− 2est

(s− ia)3

]

= − te−ait

4a2
− 2e−ait

8a3i
,

and

Res
s=−ai

(estF (s)) = − te−ait

4a2
− e−ait

4a3i
.

Therefore, the inverse Laplace transform of F (s) is given by

L−1(F (s)) = Res
s=ai

(estF (s)) + Res
s=−ai

(estF (s)) = − teait

4a2
− te−ait

4a2
+

eait

4a3i
− e−ait

4a3i
,

That is,

L−1(F (s)) = − 1

2a2
t cos at+

1

2a3
sin at,

for t > 0. You can check this by taking the Laplace transform of the right-hand side.


