Math 309 Spring-Summer 2017

Mathematical Methods for Electrical Engineers
Solutions to Practice Problems for Final Examination
Completion Date: Tuesday August 15, 2017

Question 1.

(a) Using a purely geometric argument, show that
|2 = 1] < |lz] = 1] + |2| arg(2)]
for all z € C.

27i

», n > 2. Calculate

(b) Let w, be the primitive n'® root of unity given by e
14 4wy, + 902 + -+ nZwi L

SOLUTION:

(a) From the triangle inequality, we have
2= 1| < |lz| = 1| + |z = |2l

but |z — |z[| is the length of the chord joining the point z and |z|, while |z| - arg(z) is the length of the
circular arc from z to |z| and
|2 = J2] < |2] - arg(2),
so that
2= 1] < ||zl — 1] + |2 - arg(2).

(b) Since n > 1, then w, = e n* # 1, and since

0=1-w)=1-w,) (1+w, +wl+wl")

then
L+ w, + w2 +-w!t=0.
Letting T,, = 1 + 2w, + 3w,2L + -+ nw’ !, we have

n

(l—wn)Tn:1—|—wn+w721+~-~+wz71—nwz:—n,
so that n
142w, + 3w + - +nw? ! = — .
1—w,

Now let S, = 14 4w, + 9w? + --- + n?w? !, then
(l—wn)Sn:1—|—3wn+5wi+7wi+...+(Qn_l)wz—l_nz
:2+4wn+6wi+8wz+~~+2nw2*1_n2,

since 1+ w,, + w2 + - -w"~ = 0. Therefore,

(1 —wn)Sp =2 (1 + 2w, + 3wl + - +nwl ') —n? = - —n2

so that
2n n
S, = — — .
(1-wy)? 1—w,




Question 2.

Let a, g € C.

(a) Show that o+ B> = [1+aB[ = (1—a?) (1 - |8P) .
(b) Show that if || <1 and [B| <1, then |a+3|<|1+afB].

(¢) When does equality hold in part (b)?
SOLUTION:

(a) For a, f € C we have

la+ B> = (a+ B) @+ B) =|a]* + aB +aB + 8%,

also,
1+ aB)? = (1+af)(1+ap) =1+ af +ap +|al* |8,
so that B
la+ B2 =a]* + 1+ B> =1 |a]* |8 + |8,
that is,

o+ B> = 1+ ap* = (1 = |al*)(1 = %) (%)

(b) If |a] <1 and |B| < 1, then
(1= lo/*) (1= |B]%) > 0,

and therefore B
o+ B < 1+ a7,

taking the nonnegative square root of both sides of this inequality we have
la+ 8| < [1+af.

(¢) From (%), equality holds if and only if either |a| =1 or || = 1.

Question 3.

Let o = =, where m and n are positive integers, and let z* = e logz denote the multiple-valued o' power
function for z # 0.

(a) Show that the principal value of (z%)m always gives the principal value of z®.
(b) Show that (zm)% may not give the correct values of z® by calculating the principal values of
O N €
for z = —1+1.

(¢) What, if anything, is wrong with the following?

1=Vi=y(-1)-(-1)=vV-1-V-1=i-i=-1



SOLUTION: Let av = & where m and n are positive integers, if z # 0, then the principal value of 2 is

2 — 6ozLog z _ ea[ln\z\JrzArg(z)’

that is,

S0 — |Z|a . eiaArg(z)

where |z| > 0 and —7 < Arg(z) <.
(a) The principal value of z7 is

iArg(z)
= A ‘Z| - e n s

and so the principal value of (2%)m is

()" = (%

where |z| > 0 and —7 < Arg(z) < m, which is exactly the same as the principal value of z*

z\)m et Are(z) - |2|* . toArg(z)

— eaLog z

N

(b) If z = —1+14, then 2% = (=1 414)* =1 — 2i — 1 = —2¢, and the principal value of (2?)? is
1 in
(22)2 =V2.e7 T =1—1i.

If z = —1+ 4, the principle value of 2% is

so that N .
(ZE) :\/5@%:—14—7]7

which is the same as z' = —1 + i. Therefore, (22)2 # (z%)z.

(¢) From the above, it is not true in general that (22)% = (z%)z, in particular,

Vi=V(-1)(-1) #V-1-vV-1=i*=-1.

Question 4.
Show that for each positive integer n > 1, and for each real number «,

(I+cosa+1isina)” = 2”005”% (cos% + 7 sin %) )

SOLUTION: If n > 1 and « is a real number, then
9 si « Oz)”
7 S111 — COS —
2 2

a+_ . a)”
cos — +¢sin —
2 2

(I4+cosa+isina)” = (2 cos?

_l_

= 2" cos™

.
|3
Q

Il
[\}
3
o
@]
w0
3
N[O N[ DR
o) —~
a
L\J‘E
S—
3

( noz+, . na)
cos — + i8in —
2 2/’

so that
(14 cosa+isina)" = 2" cos™

ol R

( no Y noz)
€os — + % sin — ) .
2 2



Question 5.

Show that
. m . 2m . 3w . (n=Dm n
sin — - sin — - sin — - - - sin =
n n n n on—1

formn=23,....

SOLUTION: For n > 2, the roots of the equation z” — 1 = 0 are

2mi 4mi 2(n—1)mi
zo=1,z1=en ,zo=€en , ..., Zp_1=¢€ n ,

so that the expression z" — 1 factors as

i i 2(n—1)mi
z"fl:(zfl)(zfe%)(zfe%)w(zfe n

Now divide by z — 1 and let z — 1 to get

d n
—(z =n,
dz( ) e
so that
27 4mi 2(n—1)mi
n:(lfen lfen) 1—e¢ n (%)
Taking complex conjugates, we get
ux} e 2(n—1)mi
n=fi=(1-e )l ) (1o w0 (+%)

Multiplying (x) and (xx) we get

2 4 20n — 1
n2 =9n-1 <1—cosﬂ-) (1—COSW)--~<1—COSM>,
n n n

so that ) )
n—
n? =on=t.onl g2 T 2 21 g2 Q,
n n n
and taking nonnegative square roots
. . 2r . 3w . (n—=1m n
sin — - sin — - sin — - - - sin =
n n n n 2n—1
formn=23,....
Question 6.
Find all solutions to the differential equation
F'(2)+ B%f(2) =
where f(z) is an entire function.
Hint: Write
f(2) =ap+ a1z +agz® +azz® + -+ a2 +---
and solve for the coefficients as, as, ... in terms of ag, a; and 3.

SoruTION: If f(z) is an entire function which is a solution to the differential equation, then f(z) has a
Maclaurin series expansion

f(2) =ao+ a1z + az® + azz® + -+ a,2" + -



which is valid for all z € C, and since f(z) satisfies the differential equation, then

fﬂ(z) =+ BQf(Z) = Z TL(TL - l)anzn72 + ﬁZ Z anz" =0,
n=2 n=1
that is,
Z [(n + 2)(” + l)an+2 + B2an] 2" =0
n=0
for all z € C.

Therefore (n +2)(n + 1)a, o + B%a, = 0 for all n > 0, and iterating, we have

52
az = —aao
2
as = —[ial
3!
4
aq = 57&0
4!
4
as = 6*&1
5!
and an easy induction argument shows that
(_DnﬁZn (_1)n62n
e — d n = 75 a1
2 (2n)! AE Gl = e )

for n > 0.
If 8 # 0, the solution is

— (=" W G (D7 n a
f(z) = aonz::o @n)! (B2)*" + é;m(ﬂz)z 1 = ggcos Bz + Elsmﬁz

for z € C.

If 5 =0, the solution is
f(z)=ap+ a1z

for z € C.
Question 7.

Which of the following functions is analytic and/or entire and where? (Give reasons for your answers.)

(a) f(2) =2"
(b) g(z) =7
(¢) hlz) = 1 —iosz'

SOLUTION:

(a) f(z) = 2% is entire, since f’(z) = 5z* exists for all 2z € C.



(b) g(2) =22 = u(z,y) +iv(z,y) where u(z,y) = 2% — 42, and v(x,y) = —2xy. Taking partial derivatives,

we have 5 9
u v
— =2, —=-2
oz 0 By “
and
ou _ o 0v_
Ay = Y, or Y,

so the partial derivatives exist and are continuous everywhere. However, the Cauchy-Riemann equa-
tions hold if and only if

20 = -2z
2y = —2y,
that is, if and only if z = 3 = 0. Therefore ¢’(z) exists if and only if z = 0, so that g(z) = Z? is nowhere
analytic.
1
(¢) h(z) = ——— is analytic at all z € C for which cos z # 1.
1—cosz

Now cos z = 1 if and only if (e +e7%*)/2 = 1, that is, if and only if €2'* — 2¢%* + 1 = 0, that is, if and

only if (eiz — 1)2 =0, that is, if and only if e”* = 1, that is, if and only if 2 = 27n for n = 0, £1,£2,....
Therefore, h(z) = 1/(1 — cos z) is analytic except at the points z = +27n, n € Z.

Question 8.

Compute 7{ f(2)dz where f(z) = 2® +iy? for 2 = x + iy, and C is the boundary of the triangle with
c
vertices (0,0), (1,0), and (0,1), and C' is traversed in the positive direction.

SOLUTION: We parametrize the contour C below as follows.

0.1

©0) ¢ @y X

On the horizontal line segement C joining the points (0,0) and (1,0), we have
z=1t, 0<t< 1.
On the line segment C5 joining the points (1,0) and (0, 1), we have
z=(1—t)+it, 0<t< 1.
On the line segment C3 joining the points (0,1) and (0,0), we have

z=i(l—t),0<t<1.



Therefore,

! 2 . 2 ’ .1 _ ' 2 _1
. f(z)dZZ/O [2(t)? + iy (t)?] [2(t) + iy (1)] dt—/o 2 dt = 3

T I I D
. (z)dzf/o [(1—1t)* +at?] [ 1+z]dtf3(1+z)( 1+41) = 2

b 2 g1
[ 1) dZZ/O (1~ 0 (i)t =

so that L
[ 1@ [ serier [ e [ ea=L-2iloo
c C1 C Cs 3 3 3

Question 9.
Evaluate the contour integral / Zdz
c

where C' is the square with vertices (0,0), (1,0), (1,1), (0,1) traversed in the counterclockwise direction.

y
C
0.) 3 1,1)
C4 C2
©) ¢, @O x

SOLUTION: We write C' = C + C5 4+ C3 + Cy as shown in the figure above, then

/Edz:/ Edz—i—/ Edz—i—/ Edz—i—/ zZdz.
C C] CQ 03 C4

On Cy: We have z=1¢, 0 <t <1, and Z = ¢, so that

1 211
t 1
/zdz:/tdt:— !
cy 0 21
On C5: We have z=1+1it, 0<t <1, and Z =1 —it, so that
! Lot 1
/Edz:/(l—it)idt:it +=| =i+
Cs 0 0 2 0 2
On C3: Wehave z=t+14, 0<t<1,and Z =1t — i, so that
0 1 t21 1
/Edz:/(t—i)dt:—/(t—i)dt:—— vit] = L4
Cs 1 0 2 0 0

On C4: We have z =it, 0 <t <1, and Z = —it, so that

/ Edz:/ (fit)idt:f/ (—it)idt — ——
Ca 1 0 2

Therefore,



Question 10.

Let C' be the boundary of the square with vertices at the points z =0,z =1,z = 1 + 1,
z = 1 and with counterclockwise orientation. Evaluate

7{ z2 dz.
c

SOLUTION: We write C' = Cy + Cy 4+ C3 + Cy as shown in the figure below, then

/z%h:/ EZdz—l—/ 22d2+/ EQdZ—F/ Z2dz.
C Cy Co Cs3 Cy

y
C
01) 3 1)
C4 Co
(0,0 c, @0 X

On Cy: We have z =1¢, 0 <t <1, and 22 = t%, so that

1 t3
/Edez/ t2dt = —
c 0 3

On Cy: We have z = 1+it, 0 <t <1, and 2% = (1 —it)? = (1 — ¢2) — 2it, so that

1

1
0

1 1 3 1 211 .
t 2t 2
/Zde:i/(l—tQ)dt-i—Q/ tdt:i(t_> LI T
Cs 0 0 3 0 2 0 3
On Cs: We have z =t +i, 0 <t <1, and 22 = (t —i)? = (t* — 1) — 2it, so that
0 0 1 1 t3 1 t21 9
/52d2=/(t2—1)dt—2i/ tdt:/(1_t2)dt+2i/ tdt:(t—) +2| =244
Cs 1 1 0 0 3/ 1 2], 3

On Cy: We have z = it, 0 <t < 1, and 22 = (—it)? = —t2, so that

0 1 t3
/Ezdz:/ (—t2)idt:i/ t2dt =i—
Cy 1 0 3

1 .
7

0 3 '

Therefore,

-2 . .
C 3 3 3 ! 3 !

Question 11.
Evaluate

L 2
f Loglz+2) ..
|z]=1 z

(the circle |z| =1 is oriented counterclockwise)



SoLuTION: The function Log(z + 2) is analytic at each point in C except on the portion of the real axis

where z < —2. The integrand
~ Log(z+2)
- 2

f(2)

is analytic on and interior to the circle |z] = 1, except at the point z = 0, where it has a pole of order two
with residue

z

d . d ) 1 1
= lim 5, Loz +2)] = limy —— =5

From the Cauchy residue theorem, we have

L 2 1
f Mdz':%ri-fzmﬂ
S 2

Question 12.

Evaluate ; 9
f e,
l2l=2 (2 —1)

(the circle |z| = 2 is oriented counterclockwise)

SoLUTION: The function
sin (z/2)

tan (z/2) = s (22)

is analytic everwhere except at the isolated zeros of cos (z/2), that is, at the points
z 1 .
—=|n+=-|m n==x1, £2 £33
2 2

or

2= 2n+1)m, n==+1, £2, +3,.. .,

all of which lie outside the circle |z| = 2.

Therefore, the function
tan (z/2)
(z—-1)?

is analytic everywhere on and inside the circle |z| = 2, except at the point z = 1, where it has a double pole
with residue

B = lim 4 [(z—1)%f(2)] = ll_)ml % [tan(z/2)] = ll_}Hi %secz(z/Q) = %sec2(1/2).

From the Cauchy residue theorem, we have

tan (2/2) .,
fiz|_2 W dz = misec (1/2)

Question 13.

Evaluate

3+i
/ (z —1)%dz.



SOLUTION: The function

is entire, and has an antiderivative

and

Question 14.

(a) Given functions u(z,y) and v(z,y) state sufficient conditions (on the partial derivatives) for

f(z) = u(x,y) +iv(z,y)
to be analytic at a point zj.

(b) State the Cauchy Integral Formula.
SOLUTION:

(a) The function f(z) = u(z,y) + iv(z,y) is differentiable at the point zg = xg + iy if the first-order
partial derivatives of u and v exist at each point of a neighborhood of the point (xg, y9), are continuous
at the point (zg,yo), and satisfy the Cauchy-Riemann equations

Uy = Uy and Uy = — Vg

at the point (xg,yo)-

However, the question asks for a sufficient condition for the function f(z) to be analytic at the point
20, and for this the derivative of f(z) must exist at each point of a neighborhood of zy. Therefore, a
sufficient condition for f(z) to be analytic at a point zy is that the first-order partial derivatives exist
and are continuous throughout a neighborhood of (z¢, yo), and satisfy the Cauchy-Riemann equations
at each point in that neighborhood.

(b) The Cauchy Integral Formula states that

If the function f(z) is analytic everywhere inside and on a positively oriented simple closed contour
C, and if zg is any point interior to C, then

_ 1 f(z)
f(z0) = prrl M dz.

Question 15.

Obtain the first four (4) non-zero terms of the Laurent series expansion of the function
1
er — 1’

valid in the domain 0 < |z] < 27.

SOLUTION: The function 1

e —1

flz) =

has a simple pole at the point zy = 0, since

. 11, 1

has a zero of order 1 at zy = 0.



The residue of f(z) at zp =0 is

Res(f(2)) = lim == o =1

since the limit is just the reciprocal of the derivative of e* evaluated at z = 0.
Suppose that the Laurent series expansion of f(z) is
1
f(z) = ;—|—a0+alz+a222+a3z3+a4z4+~-~

valid for 0 < |z| < 27, then since f(z) - (e* — 1) = 1, we have

that is,

for 0 < |z] < 27.

Therefore,

1 1 1
(1—|—aoz+a122+a223+a4z4—|—~-) <z+2!22—|—3!23+4!z4+~-

and collecting terms that multiply z*, for k = 1,2, 3,4, we have

1 a 1 a a 1 a a a
z+(a0+>z2+(a1+;+>23+<a2+1+0+)z4+<a3+2+1+0+

2! 3! 2! 3! 4! 2! 3!
so that
1
a0+570
ag ]._
a1+§+§—0

from which we can easily solve for ag, a1, as, as.

Question 16.
1 . . /
—— where ¢(z) is analytic at 29, ¢(20) = 0, and ¢'(20) # 0.

q(z)

Show that zg is a pole of order m = 2 of the function f(z) with residue

Let f(z) =

qN(ZO)
q'<Z0)3 '

by = —

SoLUTION: Note first that 2z is a zero of order m = 1 of the function ¢(z), so that

q(2) = (z — 20)9(2)
where g(z) is analytic at zo and g(zp) # 0.

)-=



Then we can write (2)
z
f2)= =2

(z = 20)*
where ¢(2) = 1/g(2)? is analytic at 29 and ((29) # 0. Therefore, 2y is a pole of order m = 2 of the function

f(2).

Now, (2)
d 2 — o (2) = 29'(2
g (e~ @)] = @@ ==
and
o Do _29'(20) _ 4q"(20) *
Resf() = Jim o e =200 @] = —00% = =ty ”
¢(2) = 9(:) + (2~ )9 (2)
so that

q"(2) = 29'(2) + (2 — 20)9" (2).
Therefore, ¢"(2z0) = 2¢'(20) and ¢’'(29) = g(20), from which (x) follows.

Question 17.

Obtain the expansion of the function
224241
23

flz) =

into its Laurent series, valid in the domain 0 < |z| < oo.

SoLUTION: We have 1 L 1 1
_ (.2 _
f(Z)—(Z +Z+1)-;—;+? 2*3

for |z| > 0, and this is the Laurent series expansion for f(z) in the domain 0 < |z] < co.
Question 18.
Using residues, show that

/°° @ T
@ ™ T

2

SOLUTION: Let f(z) = (1_::722)2, and for R > 1, consider the integral of f over the contour C'r shown
below.
X
We have
22dz B 22dx . 2
= 2mi Res
cn U122 g vare - T8\ a7

Now,




1
where ®(z) = EEE is analytic at z =i and ®(i) = 1 # 0, so that f has a pole of order m = 2 at z = 1,
z
with )
2z 2z 24 2 2 )

R = (b/ = — = = — = ——,

fo(f(z)) (1) +i2|_, (+i?l_, (202 + (2i)3 (2i)3 4
Therefore,

/ 22dz N /R 22dx o i T ()
_Faz W B )
cn M+22)2 7 [ 5 (1+22)2 4 2

However, on Cr, we have z = Re'?, and

11+ 227 > (|2)* - 1)2 > (R* —1)?

/ 22dz
Cr (]. + 22)2

if R > 1, so that
R?.27R .
= -1y

as R — oo.
Letting R — oo in (%), we have
/°° w?de o7
oo (T 422)2 27
Question 19.

(a) State the Cauchy integral formula for the n** derivative f(")(zg) of a function f(z) which is analytic
everywhere inside and on a simple closed contour C' (described in the positive sense) and zg is any
point interior to C.

(b) Use the Cauchy integral formula to evaluate the integral

sin z
/ S dz
lzl=1 %

where the circle |z| = 1 is traversed in the counterclockwise direction.

SOLUTION:

(a) The Cauchy integral formula for derivatives states that if f(z) is analytic everywhere inside and on a
simple closed positively oriented contour C, and z( is any point interior to ¢, then

™ (z) = n!jéc( 1(z) dz

270 z—zo)"tl

(b) If we take f(z) =sinz, and C : |z| = 1, then the Cauchy integral formula with zy = 0 and n = 7 says

that
7! sin z d"sin z

= —cos0 = —1,
z=0

/ sin z d 271
7= ——
|z|=1 2’8 7'

where the circle |z| = 1 is traversed in the counterclockwise direction.

211 |z|=1 ZS dZ7

and




Question 20.

Find the Laurent series expansion of the function

s 1/ 1 1
ﬂd_22—1_2<2—1+z+1>

valid on the following annular domains.

(a) 0<|z—1]<2.
(b) 0 < |z+1]<2.

SOLUTION:

(a) We expand the function in a Laurent series expansion about the point zp = 1:

z 1 1 N 1
22—-1 2\z—-1 z+1

BRI U
S 2z-1 22-1+2
11 1 1
T 9, 4 -1
2z-1 41_|_Z
2
1 1 1 z—1 z—1)2 z—1)3
RN S N PR Gt ) BN CEt ) SR It i
2z-—1 2 22 23
so that
z 11 = (=1)"
= — _171
21 2z—1+Z;2MQ@ )
valid for 0 < |z — 1] < 2.
(b) We expand the function in a Laurent series expansion about the point zp = —1 :
z 1 1 . 1
22—1 2\z4+1 z-1
BRI NS
S 2z41 2241-2
11 1 1
2241 4 2+l
2
11 1 (z+1) (z+1)?* (241)
= — 1
22+1 [+ y Tt 7
so that
2 11 =1
I 1)
21 22+1 E;WHJZ+)

valid for 0 < |z + 1] < 2.



Question 21.

Find and classify (according to the terms pole, removable, essential) the singular points of

f(2)

z
1—cosz

For each pole, give its order and compute the residue there.

SoLuTION: Note that f(z) =
n=0,+1, £2, ..., we have

T has isolated singular points at z = 2wn, n € Z, and that for

cos(z — 2mn) = cos z,

so that if g(z) = 1 — cos z, then

(oo}
(—=1)*(z — 27n)?*
g(z) =1—cos(z —2mn) =1— ,
e
that is,
o0
(=1)*=1(z — 2mn)?(k—1
g(Z):(Z—27TTL)2Z (Qk)' :<Z_27Tn)2¢(z)7
k=1 ’
where i =
N (—1)F (2 — 27n) 201
P(z) =
2 o)
is analytic at z = 27n and ¢(2mn) =1 # 0.
Therefore, g(z) = 1 — cos z has a zero of order 2 at z = 2an for n =0, £1, £2, ..., and so
2
f(z) = 1 —cosz

has a simple pole at z = 0, and a pole of order 2 at z = 27n for n = £1, £2, ....

For the simple pole at z = 0,

z 1 1 Dp(2)
f(z) = T =- T = ,

— COS z Z 5= qi% =+ - z

and Res (z) =2.
2=0 \ 1 —cosz
For the pole of order 2 at z = 27n,
£2) z 1 z D (2)
zZ) = = . =
1L —cos(z—2mn) (2—2mn)? L —L(z—2mn)2+ - (z—2mn)?’
and J &1 (27m)
z o 1 9 _ 9(2mn)
e, (1 COSZ> =t gy g B2 @)) = = =2

forn =41, +£2, ....
Question 22.
Find the Laurent expansion of f(z) = % valid in the domain

G-1(-2)

(a) 0<|z—1] <1,
(b) 0 < |z—2] <1,

(c) 1<z <2.



SOLUTION: Note that

for z # 1, 2.

(a) For 0 < |z —1| < 1, we have

1 1
2—2 1-(z-1) :_;(”Z—l)n’
so that -
e RO
valid for 0 < [z — 1] < 1.
(b) For 0 < |z — 2| < 1, we have
1 1 -
2—1 14+(2—2) 77;0(71)n(272)n’

so that

valid for 0 < |z — 2] < 1.
(c) For 1 < |z] < 2, we have

2 1 1 1 1
z2—2 z—-1 1-2/2 2z 1-1/2

and
- A > o X
JE) == =2 =~ 2w
2 z 2 z
n=0 n=0 n=0 n=1
valid for 1 < |z| < 2.
Question 23.
For n =1,2,... find the 2nt* derivatives of

f(z) = sin (2?)

at z = 0 by using the Cauchy integral formula for derivatives.



SOLUTION: We have
1)k (z2)2k+1 _1\k,4k+2
— (—1)*(z% — (—1)kz

f(2) = sin(z?) = Z T2he = kzzom7

k=0

valid for all z € C, and from the Cauchy integral formula,

f(2”)(0) _ (2n)! jI{Z sin(z?) 0z = (2n)1 E{SS <Sm(z2)> .

271 -1 Z2n+ 1

If n is even, then 2n = 4m for some integer m > 0, and

A T 2 (2k 1 1)

sin(2?) = (_1)k HA(k—m)+1

o

sin(2?)

. . _ (4m) _
so that 1}:(38 <z4m+1 ) =0, and f*™(0) =0.

If n is odd, then 2n = 4m + 2 for some integer m > 0, and

Z4m+3

sin(2?) i((—l)k 4(k—m)—1

= z
' )
24 2k + 1)

(sin(z2)\ (=)™ (am2) gy _ (CD™ - (4m +2)!
so that lz%zeg <z4m+3 ) = emi )l and f (0) = Gmt 1l

Question 24.
(a) Show that
2
cosf>1——10
™
for 0 <0< g
2
Hint: Look at the graphs of y = cosf and y = 1 — — 6 on the interval 0 < 6 < g
™

(b) From part (a), show that

jus

2 _Rcos# l _ _—R
/06 d9<2R(1 e )

for R > 0.
SOLUTION:

(a) Define the function

£(0) = cosf — (1 - ;‘;9)

for 0 <6 < g,then

f(0) = —sind + 2 and  f"(0) = —cos®
7r

so that f”(6) < 0for 0 <6 < g



Since

F(0)=0  and f(f)zo,

and f is strictly concave downward on the interval, then
2
f(x) =cos — (1— 9) >0
T

mnm0<9<g.

(b) For R > 0, we have
e—RcosO < e—R(l—%‘9>

and therefore
3 3 2 5 2R 2R
2 ) 2 _p(1_2 2 2R T 2R
/ e‘RCObGd9</ e R(l 770) d@ze‘R/ e ldf=e B —enf =el
0 0 0 2R 0

that is,

ol

—Rcos 6 7T' —R
df < — (1— .
A ‘ <ar =)
Question 25.

(a) Show that the function

L 1
og(= + ), for 0<|z/<1
f(z) = 2
1, for z2=0

is analytic at z = 0.

(b) Find a formula for the derivatives £ (0).
SOLUTION:

(a) Let g(z) = Log(z + 1), then g(z) is analytic at all z for which

z—&—lzpei‘i’7 p>0, —m<p< .

In particular, ¢g(z) is analytic in the disk |z| < 1, with

oo

/ _ 1 o n._n
§(E) = g = D (1)

n=0
for |z| < 1.

If |z| <1 and C is any contour joining 0 to z which lies entirely inside the disk, then

e 1 nzn—i-l
Log(z+ 1) — Log(1) = Z %

that is,
for |z| < 1, and therefore

for 0 < |z] < 1.



However, the series on the right-hand side converges to 1 for z = 0, so that if we define

L 1
w, for 0<|z/<1
f(z) = z
1, for z=0

then

for |z| < 1, and therefore f is analytic at z = 0.
(b) Since

s =y CE

n=0

for |z| < 1, then this is the Maclaurin series expansion for f(z), and therefore

fmo) (="

n! n+1’
that is,
)y (="
F7(0) n+1
for n > 0.

Question 26.

Using Cauchy’s residue theorem, show that

for a > 0.

SoLUTION: Consider the integral % dz where I'p is the contour shown below, traversed in the

Tr 22 + 1
counterclockwise direction.

For R > 1, the integrand f(z) = % has a simple pole at zy = ¢ inside the contour I'p with residue
z
e—a
R =
Resf(2) = -

and from the Cauchy residue theorem

etaz 0 etaT R etaT etaz
\% ?HdZ:‘/ ﬁd.ﬁﬁ*/ ﬁdl"i‘/ ﬁd}&’:ﬂ'efa,
I'r # -RT o T Cr %

R e—ia:v R eiaw eiaz
/ 27dx+/ 27d1'+/ 27(12:’/7'6_@,
o T + 1 o T =+ 1 Cr z2e 4+ 1

that is,



so that
R 1az
2/ C(;Sﬂdzw/ - de=me™ ()
o T +1 CRZ +1

Now, on Cr we have
’ezaz’ — e~ < 1

since a > 0 and y > 0, and from the triangle inequality
|22 +1] > 2P -1=R*—1

for all z € Cg, so that

eZU/Z ,H-R
S d < 0
/CRZQH Z‘_RQ—l

as R — oo.

Letting R — oo in (x%) we get

*° cosax
2/ 5 de =me™ 9,
o z%+1

/°° cosaz , T _a
———dr = -e .
o 2241 2

or

Question 27.

1
Evaluate 7{ e dz
|z|=7 1 —cosz

142

SOLUTION: The function f(z) = T coss has a pole of order 2 at z = 27n, n =0, £1, +2, ..., and since
—cos z
cos(z — 2mn) = cos z,
we can write . o(2)
+z z
f(z) = = 5
1—cosz (z—2mn)
where 41
z
¢(z) =
57— 3z —2mn)2+ -
. . 2mn +1
is analytic at z = 27n, and ¢(2mn) = ——— # 0.
2!
Now,
Res ( z+1 ) _¢(2mn) 1-{%—%(2—27771)2—|—~--}—(z+1)-{W—Fu-}
z=2mn \ 1 — cos z 1! {%, %(27271.”)24»“.}2 2227rn7
so that

1 1
Res 2t =2 5 =2
z=2mn \ 1 — cos z (%)
forn =0, +1, +£2, ....

The only singular points inside the contour |z| = 7 are z = 2n for n = 0, £1, and therefore

1
7{ %dz =2mi{2 4+ 2+ 2} = 127i.
|z|=7 +



Question 28.

Show that ?{ w dz = 2miln 2.

|z|=1 z
SOLUTION: Let ®(z) = Log(z + 2), then ®(z) is analytic for all z with

24+2=0pe?, p>0, —m<P<m.

In particular, ®(z) is analytic for |z| < 1, with ®(0) = Log(2) = In2 # 0, and therefore

_ Log(z+2) ®(2)

f(2)

z z

has a simple pole at z = 0 with
L 2
Res (Og(zﬂ) —9(0) = In2,

2=0 z

and therefore

?{ wdz = 27iln 2.
|z|=1 z

Question 29.

1

how th (A gy —omi S~
Show t at?g e dz mkzzok‘!(kJrl)!

|z|=1

SoLuTION: We have

1 1 1 1 1 11 11
_ (z+z)_ z, .5 — - 2 - .3 - -
f@)=erisi=ctee _(1+1!Z+2!Z TR ><1+1!z 91 22
for 0 < |z| < o0.
1 1
To find Reg (ez+Z) we collect terms that multiply —, and we get
z= z
1 1 1 1 1
Z+ = —_— DEEY
Reg™ ) =gttt tana b

that is,
Res(er* ) =Y L
L CE V]

and therefore

1 - 1
Dz =2mi Y
ﬁlzle : 7”,; Kk + 1)

11
3123

+>



Question 30.

Let 1, w, and w? be the three cube roots of 1, and let
f(2) = cos(z) - cos(wz) - cos(w?z).

Clearly, f(z) is an entire function.

(a) Show that
fz) = flwz) = f(w?2).

(b) Show that
3f(2) = f(2) + f(w2) + f(w?2).

(¢) Show that the Maclaurin series of f has nonzero coefficients a,, only when n is a multiple of 3.
SOLUTION:

(a) We have
f(wz) = cos(wz) - cos(w?z) - cos(w?z),

and since w® = 1, then

f(wz) = cos(wz) - cos(w?z) - cos(z) = f(2).

Similarly,
2 4

f(w?2) = cos(w?z) - cos(w?2) - cos(w?2),
and since w® = 1, and w?* = w, then
f(w?z) = cos(w?z) - cos(2) - cos(wz) = f(2).

(b) Therefore,
3f(2) = f(2) + f(wz) + f(w?2)
for all z € C.

(¢) Since the function f(z) is entire, it has a Maclaurin series expansion that converges for all z € C, and
we can write

f(2) =ap+arz+as+-tat o= Zanz”,
n=0
and from part (b),
o0 o0 o0
3f(z) = Z anz" + Z anpw' 2" + Z apw?mz",
n=0 n=0 n=0
that is,

3f(z) = i (1+w"+ w2") anz".
n=0

Now, if n = 3k, where k is a nonnegative integer, then
I+ +w =14+ W)+ (W) =1+1+1=3#0.
If n = 3k + 1, where k is a nonnegative integer, then
T+w"+wm =14 (W) w+ (W W =1+w+w? =0
If n = 3k + 2, where k is a nonnegative integer, then
I+w"+wm =14 (W) P+ W W =1+ W) P+ W) w=14+w?+w=0.

Therefore, the Maclaurin series for f has nonzero coefficents only if n is a multiple of 3.



Question 31.

If p and ¢ are real numbers with p > ¢ > 0, show that

/2” do . 2mp
o (p+qcosh)? (p? —q2)%'

SOLUTION: We make the substitution z = €, and convert the integral into a contour integral around the
unit circle |z| = 1.

I_/‘“ do _% dz __Z,?{ zdz
o (P+qeost)®  Joyiz{p+d (24 1)) =1 {32% +pz + 417

The integrand in the integral on the right has poles of order 2 at each of the points

1 1
a= [—p+ Vp? - qﬂ and 2 [—p— p? —qQ} .

q
Since we assumed that p > ¢ > 0, the pole z, lies outside the unit circle. And since
%zz +pz+ % = g(z —z1)(z — 22),

the product of the roots is 1, so that the pole z; lies inside the unit circle.

The residue by of the pole of order 2 at the pole z; is given by

b1=££1Ui{@waé@;jzi@V}]

_4jd =
B q2 dz (Z - 22)2 z=2z

. 4 21+ 29
q? (21 — 22)3

7 p

e

Therefore, by Cauchy’s Residue Theorem, we have

/ P S |/
o (ptqeosf)? NI (2= g2)3

for p > g > 0.

Question 32. Evaluate the integral

> cosax — cos bx
I = ———dx
0 X

where a and b are nonnegative real numbers. Integrals of this type are called Frullani integrals.

Note: The integral I cannot be represented as the difference of the integrals

 cosax > cos bx
5—dr and 5— dz,
0 € 0 T

since both these integrals diverge.



To see this, since cosaz — 1 as @ — 0T, there is a positive number 7 such that | cosaz| > 1/2 for 0 < z < 7,

and therefore
/" cos ax de > /’7 1 d 1 1
T —dr = — — —
. x? — ). 222 2 2

whenever 0 < e < 1. Therefore, if we break the range of integration at 7,

> cos ax T cos ax * cosax
5 dr = 5 dr + —5— dz, (%)
. x . T . T
but
. T cos ax
lim 5 dr = +00o
e—=01 /¢ xT

so that the improper integral

> cosax
5 dx
0 xr

diverges (it converges if and only if both integrals on the right-hand side of (x) converge).

SOLUTION: We consider the function

eiaz eibz
1) =
and take the integral of f(z) over the indented contour shown below.
Y

Cr

(Y

—R - r R

We get

T waet [ foyaet [ r@ae s [ fe)de—o. ()
/ IRELSY

—R

Along Cpr, we have
e =e” <1 and le??| = e < 1,

since a > 0 and b > 0, and therefore
2

G < 2

for all z on Cg, so that

Si'ﬂ'R—>0

flz)de| <

Cr

as R — oo.

To find a bound for the integral along C,, we look at the Laurent expansion of f(z) about 0 valid for
0 < |z] < co. We have

iaz)? — (ibz)? ila —
f(z)zz{i(a—b)zﬂ)z!(b)jL...}: ( - b)

p; + P(2),

where P(z) is analytic at z = 0. Integrating over the semicircle C,., we have
. dz
f(z)dz =i(a — D) —+ P(z)dz
C, c,. % C,

lim / f(z)dz = lim %—l— lim P(z)dz.
c,

r—0+ r=0t Jo, Z r—=0t Jo

and hence,



Now, P(z) is analytic at 0 and so is bounded in a neighborhood of z = 0, say |P(z)] < M for all z with
|z| < €, so by the M L Theorem,
/ P(z)dz
Cr

for r < e. Therefore the integral of P(z) over C, goes to 0 as r — 0.

<M -mr,

If we parametrize C,. as z = ret for 0 < 0 < 7, then we have
1 O iret® i
/ fdz:/ 7 d@zzf/ 1df = —mi,
c, % x ret 0

lim /CT f(z)dz =i(a —b)(—mi) = (a — b)7.

r—0+

so that

Equating real and imaginary parts in (xx), and letting r — 0% and R — oo, we have

/°° cos ar — cos bx

= dr+ (a—b)m =0.

— 00
Since the integrand is an even function, this implies that

> cosax — cos bx b—a
5 dx
0 xr 2

Question 33.

Find the inverse Laplace transform of the function
1

o= era@Ermy

where a and b are real numbers, and a # b. What happens if a = b7

1

(2 + @) (2 4 ?)
s4 = —bi, and the inverse Laplace transform is

SoLuTION: The function F(s) =

has simple poles at s; = ai, s = —ai, s3 = bi, and

4

1 [otiee et est
— ds = Res ,
21 )y _ieo (82 +a?)(s? +b2) ts=si | (5% +a?)(s* +07)

where 7 > max{]s . |so], Isal, [sal}.

Now,
R est 7] B est eait
s (52 +a?)(s2+b2)| v (s +ai)(s2 +b2)  2ai(b? — a?)’
and )
est 7] I est _efmt
R S = 1 =
—ai | (s? +a?)(s? +b?) s> —ai (s —ai)(s2 +b?)  2ai(b? —a?)’
and B} ;
est ) est 6bzt
Res = lim <~ = o )
s=bi | (82 +a2)(s2+b2)]| s—bi(s2+a?)(s+bi) 2bi(a® —b2)
and
r est 7 est _e—bit
Res = lim — = — .
s=—bi [ (s2+a?)(s2+b%)| s——bi(s2+a?)(s—bi) 2bi(a® —b?)

Therefore, if a # b, then

ft) =

1 sin at 7 sin bt
b2 —a? a b

for ¢t > 0.



If @ = b, then F(s) becomes
1 1
F(s) = -
() (s2+a2)?2  (s—ai)(s+ia)?’

which has a pole of order m = 2 at s = ai and a pole of order 2 at s = —ai.

For s = ai, the residue of e**F(s) is given by

Res(e* F(s)) = lim - {et}

s=ai s—ai ds (S —+ ai)2
test 2e5t
= 1' —
otai [(s Tai)2  (s+ m)B}

teait 2eait
4a? = 8adi’

and y y
teal ea'L
. StF - .
Res(e™F(s)) = =7 * 1a7;
For s = —ai, the residue of of e*!F(s) is given by
d €St
StF — 1 _ B
sggii(e (5)) s tai ds (s — ai)?
1' teSt 26525
= lim —
s——at (S — ai)2 (S — ia)3
B te—ait 2e—ait
T 4a? 8a3i ’
and y y
tefal e*al
st _
JRes (€ F(s)) = =15 — I

Therefore, the inverse Laplace transform of F(s) is given by

L_l(F(S)) - ReS(GStF(S)) J'_ ReS (estF(S)) o _teait _ te_ait + eait B e—ait
o o T da? 4 4d%i dai”

That is,

1 1
L™ Y(F(s)) = —letcos at + By sin at,

for ¢ > 0. You can check this by taking the Laplace transform of the right-hand side.



