Math 309 Spring-Summer 2017 Mathematical Methods for Electrical Engineers Examples from Euclidean Geometry

Department of Mathematical and Statistical Sciences University of Alberta

Example 1. Show that z_1, z_2, z_3 are the vertices of an equilateral triangle, if and only if

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1. (*)$$

SOLUTION: We will show that the identity (*) is true if and only if z_1 , z_2 , z_3 are the vertices of an equilateral triangle. If (*) holds, we rearrange the identity as follows,

$$\begin{aligned} 0 &= z_1 z_2 - z_1^2 + z_2 z_3 - z_2^2 + z_3 z_1 - z_3^2 \\ &= z_1 (z_2 - z_1) + z_2 (z_3 - z_2) + z_3 (z_1 - z_3) \\ &= z_1 (z_2 - z_1) - z_2 (z_2 - z_1) + z_2 (z_2 - z_1) + z_2 z_3 - z_2^2 + z_3 z_1 - z_3^2 \\ &= -(z_1 - z_2)^2 + z_2^2 - z_1 z_2 + z_2 z_3 - z_2^2 + z_3 z_1 - z_3^2 \\ &= -(z_1 - z_2)^2 + z_2 (z_3 - z_1) + z_3 (z_1 - z_3) \\ &= -(z_1 - z_2)^2 + (z_2 - z_3) (z_3 - z_1), \end{aligned}$$

that is, $(z_1-z_2)^2=(z_2-z_3)(z_3-z_1)$, and therefore $(z_1-z_2)^3=(z_1-z_2)(z_2-z_3)(z_3-z_1)$. Using symmetry arguments or arguments similar to the above, we see that

$$(z_3 - z_2)^3 = (z_1 - z_2)(z_2 - z_3)(z_3 - z_1) = (z_1 - z_3)^3,$$

therefore $|z_1 - z_2|^3 = |z_2 - z_3|^3 = |z_3 - z_2|^3$, so that $|z_1 - z_2| = |z_2 - z_3| = |z_3 - z_1|$, and z_1, z_2, z_3 are the vertices of an equilateral triangle.

Conversely, suppose that z_1, z_2, z_3 are the vertices of an equilateral triangle, then

$$|z_1 - z_2| = |z_2 - z_3| = |z_3 - z_1|,$$

and as can be seen from the figure

$$z_3 - z_2 = (z_2 - z_1)e^{\frac{i2\pi}{3}}$$
 and $z_2 - z_1 = (z_1 - z_3)e^{\frac{i2\pi}{3}}$.

Therefore

$$(z_1 - z_2)^2 = (z_2 - z_3)e^{-\frac{i2\pi}{3}}(z_3 - z_1)e^{\frac{i2\pi}{3}} = (z_2 - z_3)(z_3 - z_1),$$

and from this we see that

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1.$$

Example 2. Suppose that $z_1, z_2, z_3 \in \mathbb{C}$ are such that

$$|z_1| = |z_2| = |z_3| = 1$$
 and $z_1 + z_2 + z_3 = 0$,

then $z_1 z_2, z_3$ are the vertices of an equilateral triangle inscribed in the unit circle.

SOLUTION: We would like to show that

$$|z_2 - z_1| = |z_3 - z_2| = |z_1 - z_3|.$$

Note that since $z_1 + z_2 + z_3 = 0$, then $z_1 = -(z_2 + z_3)$ so that

$$z_2 - z_1 = 2z_2 + z_3$$
 and $z_1 - z_3 = -2z_3 - z_2$.

Thus, $|z_2-z_1|=|z_1-z_3|$ is equivalent to $|2z_2+z_3|=|2z_3+z_2|$, that is,

$$(2z_2 + z_3)(2\overline{z_2} + \overline{z_3}) - (2z_3 + z_2)(2\overline{z_3} + \overline{z_2}) = 0.$$
 (**)

Expanding this, we have $|z_2| = |z_3|$, which is equivalent to $|z_2 - z_1| = |z_1 - z_3|$. Similarly, $|z_3 - z_1| = |z_2 - z_3|$, and so the triangle with vertices at z_1 , z_2 , z_3 is an equilateral triangle inscribed in the unit circle.