Math 309 Spring-Summer 2017 Mathematical Methods for Electrical Engineers

Differentiation and Integration of Power Series

Taylor's Theorem and Laurent's Theorem

Department of Mathematical and Statistical Sciences University of Alberta

Date: Friday July 7, 2017

• Differentiating Power Series Term-by-Term

In this note we will show that a power series $\sum_{n=0}^{\infty} a_n z^n$ can be differentiated or integrated term by term inside its circle of convergence. First we need the following lemma.

Lemma. If $\sum_{n=0}^{\infty} a_n z^n$ has radius of convergence R > 0, then

$$\sum_{n=0}^{\infty} na_n z^{n-1} \qquad \text{and} \qquad \sum_{n=0}^{\infty} a_n \frac{z^{n+1}}{n+1}$$

also have radius of convergence R.

Proof. Let $z \in \mathbb{C}$ with |z| < R and choose r with |z| < r < R, then

$$\left|na_{n}z^{n-1}\right| = \left|na_{n}\left(\frac{z}{r}\right)^{n-1} \cdot r^{n-1}\right| = \frac{n}{r}\left|\frac{z}{r}\right|^{n-1} \cdot |a_{n}|r^{n},$$

however,

$$\lim_{n \to \infty} n \left| \frac{z}{r} \right|^{n-1} = \lim_{n \to \infty} n e^{(n-1)\ln|z/r|} = 0$$

since |z| < r, so there exists an integer n_0 such that

$$\frac{n}{r} \left| \frac{z}{r} \right|^{n-1} < 1$$

for all $n \ge n_0$, and so

$$\left|na_n z^{n-1}\right| < |a_n|r^n$$

for all $n \ge n_0$.

Now, $\sum_{n=0}^{\infty} |a_n| r^n$ converges since r < R, and from the comparison test this implies that $\sum_{n=1}^{\infty} na_n z^{n-1}$ converges absolutely for all $z \in \mathbb{C}$ with |z| < R.

On the other hand, if $z \in \mathbb{C}$ with |z| > R, we can choose a positive number r such that R < r < |z|, and if $\sum_{n=1}^{\infty} na_n z^{n-1}$ converges, then r < |z| implies that $\sum_{n=1}^{\infty} n|a_n|r^{n-1}$ converges. However,

$$n|a_n|r^{n-1} \ge \frac{1}{r}|a_n|r^n$$

implies that $\sum_{n=1}^{\infty} |a_n| r^n$ converges, which in turn implies that $\sum_{n=1}^{\infty} a_n r^n$ converges. This is a contradiction, since r > R. Therefore, $\sum_{n=1}^{\infty} na_n z^{n-1}$ diverges for all $z \in \mathbb{C}$ with |z| > R.

We have shown that $\sum_{n=1}^{\infty} na_n z^{n-1}$ converges for |z| < R, and diverges for |z| > R, that is, the radius of convergence of this power series is also R.

Now let R' > 0 be the radius of convergence of $\sum_{n=0}^{\infty} a_n \frac{z^{n+1}}{n+1}$, then from the above, the series $\sum_{n=0}^{\infty} a_n z^n$ also has radius of convergence R', and therefore R' = R.

And now the promised result, with nary a mention of uniform convergence.

Theorem. If $\sum_{n=0}^{\infty} a_n z^n$ has radius of convergence R > 0, then the function $f(z) = \sum_{n=0}^{\infty} a_n z^n$, |z| < R, is differentiable (and therefore continuous) for |z| < R; and

- (a) $f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$ for |z| < R,
- (b) $\int_0^z f(s) ds = \sum_{n=0}^\infty a_n \frac{z^{n+1}}{n+1}$ for any path C joining 0 and z which lies entirely inside the circle of convergence.

Proof.

(a) Let $z \in \mathbb{C}$ with |z| < R, and choose H > 0 so that |z| + H < R (z and H are fixed). Now let $h \in \mathbb{C}$ be such that $0 < |h| \le H$ and define

$$f_1(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$$

for |z| < R, then

$$\frac{f(z+h) - f(z)}{h} - f_1(z) = \sum_{n=0}^{\infty} a_n \left\{ \frac{(z+h)^n - z^n}{h} \right\} - \sum_{n=1}^{\infty} n z^{n-1}$$
$$= \sum_{n=1}^{\infty} a_n \left\{ \frac{(z+h)^n - z^n}{h} \right\} - \sum_{n=1}^{\infty} n z^{n-1}$$
$$= \sum_{n=1}^{\infty} a_n \left\{ \frac{(z+h)^n - z^n - n z^{n-1}h}{h} \right\}$$
$$= \sum_{n=2}^{\infty} a_n \left\{ \frac{(z+h)^n - z^n - n z^{n-1}h}{h} \right\}.$$

Therefore,

$$\left|\frac{f(z+h) - f(z)}{h} - f_1(z)\right| = \left|\sum_{n=2}^{\infty} a_n \left\{\frac{(z+h)^n - z^n - nz^{n-1}h}{h}\right\}\right|$$
$$= \left|\sum_{n=2}^{\infty} a_n \sum_{k=2}^n \binom{n}{k} z^{n-k} h^{k-1}\right|$$
$$\leq |h| \cdot \sum_{n=2}^{\infty} |a_n| \sum_{k=2}^n \binom{n}{k} |z|^{n-k} |h|^{k-2}$$
$$\leq |h| \cdot \sum_{n=2}^{\infty} |a_n| \sum_{k=2}^n \binom{n}{k} |z|^{n-k} H^{k-2}$$
$$= \frac{|h|}{H^2} \cdot \sum_{n=2}^{\infty} |a_n| \sum_{k=2}^n \binom{n}{k} |z|^{n-k} H^k$$
$$\leq \frac{|h|}{H^2} \cdot \sum_{n=1}^{\infty} |a_n| \sum_{k=0}^n \binom{n}{k} |z|^{n-k} H^k$$
$$= \frac{|h|}{H^2} \cdot \sum_{n=1}^\infty |a_n| (|z| + H)^n$$
$$\leq \frac{|h|}{H^2} \cdot M$$

where $M = \sum_{n=1}^{\infty} |a_n| (|z| + H)^n < \infty$ since |z| + H < R. Therefore, we have

$$\left|\frac{f(z+h) - f(z)}{h} - f_1(z)\right| \le \frac{|h|}{H^2} \cdot M$$

for $|h| \leq H$. Letting $h \to 0$, then

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = f_1(z)$$

for |z| < R, that is,

$$f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$$

for |z| < R.

(b) Now let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for |z| < R, and define

$$F(z) = \sum_{n=0}^{\infty} a_n \frac{z^{n+1}}{n+1}$$

for |z| < R, then from part (a), f is analytic in the domain |z| < R, and so is continuous there, and

$$F'(z) = \sum_{n=0}^{\infty} a_n z^n$$

for all |z| < R, that is, F is an antiderivative of f in the domain |z| < R. Therefore, if |z| < R and C is any contour joining 0 and z which lies entirely inside the circle of convergence, then

$$\int_C f(s) \, ds = F(z) - F(0) = \sum_{n=0}^\infty a_n \frac{z^{n+1}}{n+1}$$

for |z| < R.

Note: If the power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

has radius of convergence R > 0, then f'(z) exists for all z with |z| < R, that is, any power series is an analytic function inside its circle of convergence.

• Taylor Series

We proved **Taylor's Theorem** earlier in class, and prove it here again in case you missed it.

Theorem. If f(z) is analytic inside the disk $\Gamma = \{z \in \mathbb{C} \mid |z - z_0| < R\}$, centered at z_0 with radius R, then f(z) has a unique power series representation

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad |z - z_0| < R$$

where

$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

for $n = 0, 1, 2, \ldots$

Proof. We will give the proof for the Maclaurin series of the function $g(z) = f(z + z_0)$, and then you can replace z by $z - z_0$ in this Maclaurin series for the general statement.

Suppose that g(z) is analytic inside the disk Γ of radius R centered at the origin. Write |z| = r and let Γ_0 denote any positively oriented circle $|z| = r_0$, where $r < r_0 < R$, then from the Cauchy Integral Formula we have 1 $\int a(s) ds$

$$g(z) = \frac{1}{2\pi i} \int_{\Gamma_0} \frac{g(s) \, ds}{s - z}$$
$$\frac{1}{s - z} = \frac{1}{s} \cdot \frac{1}{1 - \frac{z}{s}},$$

Since

$$\frac{1}{s-z} = \frac{1}{s} \cdot \frac{1}{1-\frac{z}{s}},$$

for $z \neq 1$, we have

$$\frac{1}{1-z} = \sum_{n=0}^{N-1} z^n + \frac{z^N}{1-z},$$

and replacing z by z/s, we get

$$\frac{1}{s-z} = \sum_{n=0}^{N-1} \frac{z^n}{s^{n+1}} + \frac{z^N}{(s-z)s^N}$$

Multiplying this by g(s) and integrating with respect to s around Γ_0 , we have

• •

$$\int_{\Gamma_0} \frac{g(s)\,ds}{s-z} = \sum_{n=0}^{N-1} \int_{\Gamma_0} \frac{g(s)\,ds}{s^{n+1}} \, z^N + z^N \int_{\Gamma_0} \frac{g(s)\,ds}{(s-z)s^N}$$

From the generalized Cauchy Integral Formula, we can write this as

$$g(z) = \sum_{n=0}^{N-1} \frac{g^{(n)}(0)}{n!} z^n + \rho_N(z),$$

where the remainder is given by

$$\rho_N(z) = \frac{z^N}{2\pi i} \int_{\Gamma_0} \frac{g(s) \, ds}{(s-z)s^N}$$

To show that this remainder goes to 0 as $N \to \infty$, note that since |z| = r and Γ_0 has radius $r_0 > r$, if s is a point on Γ_0 , then

$$|s - z| \ge ||s| - |z|| = r_0 - r,$$

and

$$|\rho_N(z)| \le \frac{r^N}{2\pi} \cdot \frac{M}{(r_0 - r)r_0^N} \cdot 2\pi r_0 = \frac{Mr_0}{r_0 - r} \left(\frac{r}{r_0}\right)^N.$$

where M is the maximum value of |g(s)| for s on Γ_0 . And since $r/r_0 < 1$, then $\rho_N \to 0$ as $N \to \infty$.

Therefore, the Maclaurin series for $g(z) = f(z + z_0)$ converges, and we have

$$f(z+z_0) = \sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} z^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} z^n,$$

for |z| < R. Replacing z by $z - z_0$ in this series, we have

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

for $|z - z_0| < R$.

• Examples

(1). If $f(z) = e^z$, then f is an entire function, and since $f^{(n)}(0) = e^0 = 1$ for all $n \ge 0$, the Maclaurin series for e^z is (no surprise)

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!} = 1 + \frac{z}{1!} + \frac{z^{2}}{2!} + \dots + \frac{z^{n}}{n!} + \dots,$$

that is, the same series we had for real-valued functions. Since $f(z) = e^z$ is an entire function, the Maclaurin series converges for all $z \in \mathbb{C}$.

(2). If $f(z) = \sin z$, then f is an entire function, and we can use the previous example to calculate its Maclaurin series. We have

$$\sin z = \frac{1}{2i} \left[\sum_{n=0}^{\infty} \frac{(iz)^n}{n!} - \sum_{n=0}^{\infty} \frac{(-iz)^n}{n!} \right] = \frac{1}{2i} \sum_{n=0}^{\infty} \left[1 - (-1)^n \right] \frac{i^n z^n}{n!}$$

and only the terms with n odd survive. However, $i^{2n+1} = (i^2)^n i = (-1)^n i$, so that

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

valid for all $z \in \mathbb{C}$.

(3). If $f(z) = \cos z$, then f is an entire function, and since it can be differentiated term-by-term inside its circle of convergence (in this case \mathbb{C}), we have

$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{d}{dz} \left(z^{2n+1} \right) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!},$$

valid for all $z \in \mathbb{C}$.

(4). If $f(z) = \frac{1}{1-z}$, then f is analytic everywhere except at z = 1, and since $f^{(n)}(0) = n!$.

for $n \ge 0$, then the Maclaurin series for f is

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + z^3 + \cdots,$$

valid for |z| < 1.

(5). If $f(z) = \frac{1}{1+z}$, then the Maclaurin series for f is

$$\frac{1}{1+z} = \frac{1}{1-(-z)} = \sum_{n=0}^{\infty} (-1)^n z^n = 1 - z + z^2 - z^3 + \cdots,$$

valid for |z| = |-z| < 1.

(6). If we want to expand $f(z) = \frac{1+2z^2}{z^3+z^5}$, into a series involving powers of z, we have

$$f(z) = \frac{1}{z^3} \left(2 - \frac{1}{1+z^2} \right),$$

and we cannot find a Maclaurin series for f(z) since it is not analytic at z = 0. However, since

$$\frac{1}{1+z^2} = 1 - z^2 + z^4 - z^6 + z^8 - \cdots$$

for |z| < 1. We do have an expansion of the form

$$f(z) = \frac{1}{z^3} \left(2 - 1 + z^2 - z^4 + z^6 - z^8 + \cdots \right) = \frac{1}{z^3} + \frac{1}{z} - z + z^3 - z^5 + \cdots,$$

valid for 0 < |z| < 1. This expansion involving negative powers of $z - z_0$ is called a Laurent series.

• Laurent Series

We will not prove **Laurent's Theorem** in class, but will provide the proof here in case you want to see it. You are, however, responsible for being able to use it.

Theorem. Let f(z) be analytic in the domain $D = \{ z \in \mathbb{C} | r_1 < |z - z_0| < r_2 \}$, then for z in this annulus, we have

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

where

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(s) \, ds}{(s - z_0)^{n+1}}$$

for $n = 0, 1, 2, \ldots$, and

$$b_n = \frac{1}{2\pi i} \oint_C \frac{f(s) \, ds}{(s-z_0)^{-n+1}}$$

for n = 1, 2, ... and C is a positively oriented simple closed contour around z_0 lying entirely in D.

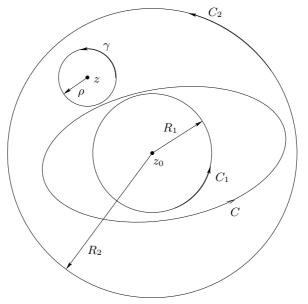
Proof. In the figure below, we let z be a point in the annulus D, and choose R_1 and R_2 such that

$$r_1 < R_1 < |z - z_0| < R_2 < r_2,$$

and let C_1 be the circle centered at z_0 with radius R_1 and C_2 be the circle centered at z_0 with radius R_2 . Also, let γ be a circle centered at z such that γ is entirely contained in the annulus D:

$$\gamma = \{ \zeta \in \mathbb{C} \mid |\zeta - z| = \rho \}$$

where $\rho > 0$. All of the circles are positively oriented.



From the Cauchy-Goursat Theorem for multiply-connected domains and the Cauchy Integral Formula, we have

$$\oint_{C_2} \frac{f(s)\,ds}{s-z} - \oint_{C_1} \frac{f(s)\,ds}{s-z} - \underbrace{\oint_{\gamma} \frac{f(s)\,ds}{s-z}}_{2\pi i f(z)} = 0,$$

and therefore

$$f(z) = \frac{1}{2\pi i} \oint_{C_2} \frac{f(s)\,ds}{s-z} + \frac{1}{2\pi i} \oint_{C_1} \frac{f(s)\,ds}{z-s}.$$
(*)

• Now for the integral over C_2 we have:

$$\frac{1}{s-z} = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(s-z_0)^{n+1}},$$

and the series converges using the same argument we used for Taylor's Theorem, since $|z - z_0| < |s - z_0|$. Therefore,

$$\frac{1}{2\pi i} \oint_{C_2} \frac{f(s) \, ds}{s-z} = \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{C_2} \frac{f(s) \, ds}{(s-z_0)^{n+1}} \right] (z-z_0)^n,$$

that is,

$$\frac{1}{2\pi i} \oint_{C_2} \frac{f(s) \, ds}{s-z} = \sum_{n=0}^{\infty} a_n (z-z_0)^n.$$

• For the integral over C_1 we have:

$$\frac{1}{z-s} = \frac{1}{z-z_0 - (s-z_0)} = \frac{1}{z-z_0} \cdot \frac{1}{1 - \left(\frac{s-z_0}{z-z_0}\right)}$$

and

$$\frac{1}{z-s} = \frac{1}{z-z_0} \sum_{n=0}^{\infty} \frac{(s-z_0)^n}{(z-z_0)^n} = \sum_{n=0}^{\infty} \frac{(s-z_0)^n}{(z-z_0)^{n+1}},$$

and the series converges since $|s - z_0| < |z - z_0|$ on C_1 . So that,

$$\frac{1}{2\pi i} \oint_{C_1} \frac{f(s) \, ds}{z-s} = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{C_1} \frac{f(s) \, ds}{(s-z_0)^{-n}} (z-z_0)^{-n-1}$$
$$= \sum_{m=1}^{\infty} \frac{1}{2\pi i} \oint_{C_1} \frac{f(s) \, ds}{(s-z_0)^{-m+1}} (z-z_0)^{-m}, \quad (\text{let } m=n+1)$$

so that

$$\frac{1}{2\pi i} \oint_{C_1} \frac{f(s) \, ds}{z-s} = \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}.$$

From (*), we have

where

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n},$$
$$a_n = \frac{1}{2\pi i} \oint_{C_2} \frac{f(s) \, ds}{(s - z)^{n+1}}$$

for n = 0, 1, 2, ..., and

$$b_n = \frac{1}{2\pi i} \oint_{C_1} \frac{f(s) \, ds}{(s-z)^{-n+1}}$$

for n = 1, 2, ...

Since f(z) is analytic in the annular region $r_1 < |z - z_0| < r_2$, from the deformation of path principle we can replace C_1 and C_2 by the contour C

Note: Taylor series and Laurent series are unique, so if you find an expansion, you have found the Taylor series or Laurent series!