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• Differentiating Power Series Term-by-Term

In this note we will show that a power series
∞∑

n=0
anzn can be differentiated or integrated term by term inside

its circle of convergence. First we need the following lemma.

Lemma. If
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anzn has radius of convergence R > 0, then
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Proof. Let z ∈ C with |z| < R and choose r with |z| < r < R, then
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for all n ≥ n0, and so
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Now,

∞∑

n=0

|an|r
n converges since r < R, and from the comparison test this implies that

∞∑

n=1

nanzn−1 converges

absolutely for all z ∈ C with |z| < R.

On the other hand, if z ∈ C with |z| > R, we can choose a positive number r such that R < r < |z|, and if
∞∑

n=1

nanzn−1 converges, then r < |z| implies that
∞∑
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n|an|r
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implies that

∞∑

n=1

|an|r
n converges, which in turn implies that

∞∑

n=1

anrn converges. This is a contradiction,

since r > R. Therefore,

∞∑

n=1

nanzn−1 diverges for all z ∈ C with |z| > R.

We have shown that

∞∑

n=1

nanzn−1 converges for |z| < R, and diverges for |z| > R, that is, the radius of

convergence of this power series is also R.

Now let R′ > 0 be the radius of convergence of

∞∑

n=0

an
zn+1

n + 1
, then from the above, the series

∞∑

n=0

anzn also

has radius of convergence R′, and therefore R′ = R.

And now the promised result, with nary a mention of uniform convergence.

Theorem. If
∞∑

n=0

anzn has radius of convergence R > 0, then the function f(z) =
∞∑

n=0

anzn, |z| < R, is

differentiable (and therefore continuous) for |z| < R; and

(a) f ′(z) =
∞∑
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nanzn−1 for |z| < R,

(b)

∫ z
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f(s) ds =
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an
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n + 1
for any path C joining 0 and z which lies entirely inside the circle of

convergence.

Proof.

(a) Let z ∈ C with |z| < R, and choose H > 0 so that |z|+ H < R (z and H are fixed).

Now let h ∈ C be such that 0 < |h| ≤ H and define
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Therefore,
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where M =
∞∑

n=1
|an|(|z| + H)n < ∞ since |z| + H < R.

Therefore, we have ∣
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for |h| ≤ H . Letting h → 0, then

lim
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for |z| < R, that is,
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(b) Now let f(z) =

∞∑

n=0

anzn for |z| < R, and define

F (z) =

∞∑

n=0

an
zn+1

n + 1

for |z| < R, then from part (a), f is analytic in the domain |z| < R, and so is continuous there, and

F ′(z) =

∞∑

n=0

anzn

for all |z| < R, that is, F is an antiderivative of f in the domain |z| < R.

Therefore, if |z| < R and C is any contour joining 0 and z which lies entirely inside the circle of
convergence, then

∫

C

f(s) ds = F (z) − F (0) =
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for |z| < R.

Note: If the power series

f(z) =
∞∑

n=0

anzn

has radius of convergence R > 0, then f ′(z) exists for all z with |z| < R, that is, any power series is an

analytic function inside its circle of convergence.

• Taylor Series

We proved Taylor’s Theorem earlier in class, and prove it here again in case you missed it.

Theorem. If f(z) is analytic inside the disk Γ = { z ∈ C | |z − z0| < R }, centered at z0 with radius R, then
f(z) has a unique power series representation

f(z) =

∞∑

n=0

an(z − z0)
n, |z − z0| < R,

where

an =
f (n)(z0)

n!

for n = 0, 1, 2, . . . .

Proof. We will give the proof for the Maclaurin series of the function g(z) = f(z + z0), and then you can
replace z by z − z0 in this Maclaurin series for the general statement.

Suppose that g(z) is analytic inside the disk Γ of radius R centered at the origin. Write |z| = r and let Γ0

denote any positively oriented circle |z| = r0, where r < r0 < R, then from the Cauchy Integral Formula we
have

g(z) =
1

2πi

∫

Γ0

g(s) ds

s − z
.
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s
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,



for z 6= 1, we have

1

1 − z
=

N−1∑

n=0

zn +
zN

1 − z
,

and replacing z by z/s, we get

1

s − z
=
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+
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(s − z)sN
.

Multiplying this by g(s) and integrating with respect to s around Γ0, we have

∫
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g(s) ds

s − z
=

N−1∑

n=0

∫

Γ0

g(s) ds

sn+1
zN + zN

∫
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g(s) ds

(s − z)sN
.

From the generalized Cauchy Integral Formula, we can write this as

g(z) =

N−1∑

n=0

g(n)(0)

n!
zn + ρN (z),

where the remainder is given by

ρN (z) =
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∫
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.

To show that this remainder goes to 0 as N → ∞, note that since |z| = r and Γ0 has radius r0 > r, if s is a
point on Γ0, then

|s − z| ≥ | |s| − |z| | = r0 − r,

and
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rN
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·
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)N
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where M is the maximum value of |g(s)| for s on Γ0. And since r/r0 < 1, then ρN → 0 as N → ∞.

Therefore, the Maclaurin series for g(z) = f(z + z0) converges, and we have
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∞∑
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n!
zn,

for |z| < R. Replacing z by z − z0 in this series, we have

f(z) =
∞∑
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n!
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n

for |z − z0| < R.



• Examples

(1). If f(z) = ez, then f is an entire function, and since f (n)(0) = e0 = 1 for all n ≥ 0, the Maclaurin series
for ez is (no surprise)

ez =

∞∑

n=0

zn

n!
= 1 +

z

1!
+

z2

2!
+ · · · +

zn

n!
+ · · · ,

that is, the same series we had for real-valued functions. Since f(z) = ez is an entire function, the
Maclaurin series converges for all z ∈ C.

(2). If f(z) = sin z, then f is an entire function, and we can use the previous example to calculate its
Maclaurin series. We have

sin z =
1

2i

[
∞∑

n=0

(iz)n

n!
−

∞∑

n=0

(−iz)n

n!

]

=
1

2i

∞∑

n=0

[1 − (−1)n]
inzn

n!
,

and only the terms with n odd survive. However, i2n+1 = (i2)ni = (−1)ni, so that

sin z =
∞∑

n=0

(−1)n z2n+1

(2n + 1)!

valid for all z ∈ C.

(3). If f(z) = cos z, then f is an entire function, and since it can be differentiated term-by-term inside its
circle of convergence (in this case C), we have

cos z =

∞∑

n=0

(−1)n

(2n + 1)!

d

dz

(
z2n+1

)
=

∞∑

n=0

(−1)n z2n

(2n)!
,

valid for all z ∈ C.

(4). If f(z) =
1

1 − z
, then f is analytic everywhere except at z = 1, and since

f (n)(0) = n!,

for n ≥ 0, then the Maclaurin series for f is

1

1 − z
=

∞∑

n=0

zn = 1 + z + z2 + z3 + · · · ,

valid for |z| < 1.

(5). If f(z) =
1

1 + z
, then the Maclaurin series for f is

1

1 + z
=

1

1 − (−z)
=

∞∑

n=0

(−1)nzn = 1 − z + z2 − z3 + · · · ,

valid for |z| = | − z| < 1.

(6). If we want to expand f(z) =
1 + 2z2

z3 + z5
, into a series involving powers of z, we have

f(z) =
1

z3

(

2 −
1

1 + z2

)

,

and we cannot find a Maclaurin series for f(z) since it is not analytic at z = 0. However, since

1

1 + z2
= 1 − z2 + z4 − z6 + z8 − · · ·

for |z| < 1. We do have an expansion of the form

f(z) =
1

z3

(
2 − 1 + z2 − z4 + z6 − z8 + · · ·

)
=

1

z3
+

1

z
− z + z3 − z5 + · · · ,

valid for 0 < |z| < 1. This expansion involving negative powers of z − z0 is called a Laurent series.



• Laurent Series

We will not prove Laurent’s Theorem in class, but will provide the proof here in case you want to see it.
You are, however, responsible for being able to use it.

Theorem. Let f(z) be analytic in the domain D = { z ∈ C |r1 < |z − z0| < r2 }, then for z in this annulus,
we have

f(z) =

∞∑

n=0

an(z − z0)
n +

∞∑

n=1

bn

(z − z0)n
,

where

an =
1

2πi

∮

C

f(s) ds

(s − z0)n+1

for n = 0, 1, 2, . . . , and

bn =
1

2πi

∮

C

f(s) ds

(s − z0)−n+1

for n = 1, 2, . . . and C is a positively oriented simple closed contour around z0 lying entirely in D.

Proof. In the figure below, we let z be a point in the annulus D, and choose R1 and R2 such that

r1 < R1 < |z − z0| < R2 < r2,

and let C1 be the circle centered at z0 with radius R1 and C2 be the circle centered at z0 with radius R2.
Also, let γ be a circle centered at z such that γ is entirely contained in the annulus D:

γ = { ζ ∈ C | |ζ − z| = ρ }

where ρ > 0. All of the circles are positively oriented.

R1

z

γ

C2

C

C1

ρ

R2

z0

From the Cauchy-Goursat Theorem for multiply-connected domains and the Cauchy Integral Formula, we
have ∮

C2

f(s) ds

s − z
−

∮

C1

f(s) ds

s − z
−

∮

γ

f(s) ds

s − z
︸ ︷︷ ︸

2πif(z)

= 0,

and therefore

f(z) =
1

2πi

∮

C2

f(s) ds

s − z
+

1

2πi

∮

C1

f(s) ds

z − s
. (∗)



• Now for the integral over C2 we have:

1

s − z
=

∞∑

n=0

(z − z0)
n

(s − z0)n+1
,

and the series converges using the same argument we used for Taylor’s Theorem, since |z−z0| < |s−z0|.

Therefore,

1

2πi

∮

C2

f(s) ds

s − z
=

∞∑

n=0

[
1

2πi

∮

C2

f(s) ds

(s − z0)n+1

]

(z − z0)
n,

that is,

1

2πi

∮

C2

f(s) ds

s − z
=

∞∑

n=0

an(z − z0)
n.

• For the integral over C1 we have:

1

z − s
=

1

z − z0 − (s − z0)
=

1

z − z0
·

1

1 −
(

s−z0

z−z0

)

and
1

z − s
=

1

z − z0

∞∑

n=0

(s − z0)
n

(z − z0)n
=

∞∑

n=0

(s − z0)
n

(z − z0)n+1
,

and the series converges since |s − z0| < |z − z0| on C1. So that,

1

2πi

∮

C1

f(s) ds

z − s
=

∞∑

n=0

1

2πi

∮

C1

f(s) ds

(s − z0)−n
(z − z0)

−n−1

=

∞∑

m=1

1

2πi

∮

C1

f(s) ds

(s − z0)−m+1
(z − z0)

−m, (let m = n + 1)

so that
1

2πi

∮

C1

f(s) ds

z − s
=

∞∑

n=1

bn

(z − z0)n
.

From (∗), we have

f(z) =

∞∑

n=0

an(z − z0)
n +

∞∑

n=1

bn

(z − z0)n
,

where

an =
1

2πi

∮

C2

f(s) ds

(s − z)n+1

for n = 0, 1, 2, . . . , and

bn =
1

2πi

∮

C1

f(s) ds

(s − z)−n+1

for n = 1, 2, . . . .

Since f(z) is analytic in the annular region r1 < |z − z0| < r2, from the deformation of path principle we
can replace C1 and C2 by the contour C

Note: Taylor series and Laurent series are unique, so if you find an expansion, you have found the Taylor
series or Laurent series!


