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In this note we will give necessary and sufficient conditions for a function f(z) of a complex variable z = x+iy

to be differentiable at a point z0 = x0 + iy0.

First we need the definition of what it means for a real valued function u(x, y) of two real variables x and y

to be differentiable at a point (x0, y0).

Definition. Let u be a real valued function of two real variables and suppose that u(x, y) is defined on an
open neighborhood of a point (x0, y0), then u is differentiable or stongly differentiable at (x0, y0) if and
only if there exist real numbers A and B such that

u(x0 + h, y0 + k) = u(x0, y0) + A · h + B · k + ϕ(h, k) ·
√

h2 + k2,

where ϕ(0, 0) = 0, and ϕ(h, k) → 0 as
√

h2 + k2 → 0 (here A and B are independent of h and k).

This is equivalent to saying that

lim
(h,k)→(0,0)

∣
∣
∣
∣

u(x0 + h, y0 + k) − u(x0, y0) − A · h − B · k√
h2 + k2

∣
∣
∣
∣
= 0. (∗)

The linear map g : R
2 → R

2 given by

g(h, k) = A · h + B · k,

denoted by
g = u′(x0, y0), g = Du(x0, y0), or g = ∇u(x0, y0)

is called the derivative or Frechét derivative of u at (x0, y0).

Note: If u(x, y) is differentiable at the point (x0, y0), then the first partial derivatives with respect to x and
y both exist and are given by

∂u

∂x
(x0, y0) = A and

∂u

∂y
(x0, y0) = B.

These results follow immediately from the definition of the derivative by first taking k = 0 and h 6= 0 in (∗)
and letting h → 0, and then taking h = 0 and k 6= 0 in (∗) and letting k → 0. Therefore, the derivative of u

at (x0, y0) is given by

u′(x0, y0)(h, k) =
∂u

∂x
(x0, y0) · h +

∂u

∂y
(x0, y0) · k

for (h, k) ∈ R
2.



We have the usual theorem concerning continuity of differentiable functions.

Theorem. If u is differentiable at (x0, y0), then u is continuous at (x0, y0).

Proof. Note that

u(x0 + h, y0 + k) − u(x0, y0) =

(
u(x0 + h, y0 + k) − u(x0, y0) − A · h − B · k√

h2 + k2

)

·
√

h2 + k2 + A · h + B · k,

and letting (h, k) → (0, 0),

lim
(h,k)→(0,0)

u(x0 + h, y0 + k) − u(x0, y0) = 0,

so that

lim
(h,k)→(0,0)

u(x0 + h, y0 + k) = u(x0, y0),

and u is continuous at x0, y0).

Now we give a sufficient condition for a function u of two real variables to be differentiable at a point.

Theorem. If the real valued function u is defined on an open neighborhood of the point (x0, y0), and one
of the first partial derivatives exists at each point of the neighborhood and is continuous at (x0, y0), while
the other first partial derivative exists at (x0, y0), then u is differentiable at (x0, y0).

Proof. We assume that ux exists at each point of an open neighborhood of (x0, y0) and is continuous at
(x0, y0), while uy exists at (x0, y0).

We will show that

u(x0 + h, y0 + k) − u(x0, y0) = ux(x0, y0) · h + uy(x0, y0) · k + ϕ(h, k) · (|h| + |k|)

where ϕ(h, k) → 0 as (h, k) → 0.

We write

u(x0 + h, y0 + k) − u(x0, y0) = u(x0 + h, y0 + k) − u(x0, y0 + k)
︸ ︷︷ ︸

(∗)

+ u(x0, y0 + k) − u(x0, y0)
︸ ︷︷ ︸

(∗∗)

• For the expression (∗), the mean value theorem guarantees a point on the line between x0 and x0 + h,

say x0 + θh where 0 < θ < 1, such that

u(x0 + h, y0 + k) − u(x0, y0 + k) = ux(x0 + θh, y0 + k) · h,

and since ux is continuous at (x0, y0), then

ux(x0 + θh, y0 + k) = ux(x0, y0) + ϕ1(h, k)

where ϕ1(h, k) → 0 as h → 0 and k → 0. Therefore,

u(x0 + h, y0 + k) − u(x0, y0 + k) = ux(x0, y0) · h + ϕ1(h, k) · h (∗)

where ϕ1(h, k) → 0 as h → 0 and k → 0.



• For the expression (∗∗), since uy(x0, y0) exists, we can write

u(x0, y0 + k) − u(x0, y0)

k
= uy(x0, y0) + ϕ2(k)

where ϕ2(k) → 0 as k → 0. If we define ϕ2(0) = 0, then

u(x0, y0 + k) − u(x0, y0) = uy(x0, y0) · k + ϕ2(k) · k (∗∗)

where ϕ2(k) → 0 as k → 0.

Therefore,

u(x0 + h, y0 + k) − u(x0, y0) = ux(x0, y0) · h + uy(x0, y0) · k + ϕ1(h, k) · h + ϕ2(k) · k,

where ϕ1(h, k) → 0 and ϕ2(k) → 0 as (h, k) → (0, 0).

Now define

ϕ(h, k) =







ϕ1(h, k) · h + ϕ2(k) · k
|h| + |k| if (h, k) 6= (0, 0),

0 if (h, k) = (0, 0),

then for (h, k) 6= (0, 0), we have

|ϕ(h, k)| ≤ |ϕ1(h, k)| · |h|
|h| + |k| +

ϕ2(k)| · |k|
|h| + |k| ≤ |ϕ1(h, k)| + |ϕ2(k)|,

so that ϕ(h, k) → 0 as (h, k) → (0, 0), and thus u(x, y) is differentiable at (x0, y0).

Finally, we are in a position to give a necessary and sufficient condition for a function f(z) of a complex
variable z = x + iy to be differentiable at a point z0 = x0 + iy0.

Theorem. (Cauchy-Riemann)

Let f be defined on an open set containing z0, then f ′(z0) exists if and only if f(z) = u(x, y)+ iv(x, y) where
u and v are strongly differentiable at (x0, y0) and satisfy the Cauchy-Riemann equations at (x0, y0)

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0).

Proof. We have to show both implications.

(i) If f ′(z0) exists, then

lim
z→z0

f(z) − f(z0)

z − z0
= f ′(z0)

exists, and by looking at real and imaginary parts of f(z), this implies that u(x, y) and v(x, y) are strongly
differentiable at (x0, y0).

If we take z = x + iy0, then

f(z) − f(z0)

z − z0
=

u(x, y0) − u(x0, y0)

x − x0
+ i

v(x, y0) − v(x0, y0)

x − x0
,

and letting x → x0, both the real and imaginary parts of this difference quotient converge to a limit, and
therefore

f ′(z0) = ux(x0, y0) + ivx(x0, y0). (1)



If we take z = x0 + iy, then

f(z) − f(z0)

z − z0
=

u(x0, y) − u(x0, y0)

i(y − y0)
+ i

v(x0, y) − v(x0, y0)

i(y − y0)
,

and letting y → y0, both the real and imaginary parts of this difference quotient converge to a limit, and
therefore

f ′(z0) = −iuy(x0, y0) + vy(x0, y0). (2)

Equating the real and imaginary parts of (1) and (2), we get the Cauchy-Riemann equations

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0),

together with two formulas for f ′(z0)

f ′(z0) = ux(x0, y0) + ivx(x0, y0) and f ′(z0) = vy(x0, y0) − iuy(x0, y0).

(ii). If u and v are differentiable at the point (x0, y0), then there exist functions ϕ1(x, y) and ϕ2(x, y) such
that

u(x, y) = u(x0, y0) + ux(x0, y0)(x − x0) + uy(x0, y0)(y − y0) + ϕ1(x, y) ·
√

(x − x0)2 + (y − y0)2

where ϕ1(x, y) → 0 as (x, y) → (x0, y0), and

v(x, y) = v(x0, y0) + vx(x0, y0)(x − x0) + vy(x0, y0)(y − y0) + ϕ2(x, y) ·
√

(x − x0)2 + (y − y0)2

where ϕ2(x, y) → 0 as (x, y) → (x0, y0).

Now, f(z) = u(x, y) + iv(x, y), so that

f(z) = u(x0, y0) + ux(x0, y0)(x − x0) + uy(x0, y0)(y − y0) + ϕ1(x, y) ·
√

(x − x0)2 + (y − y0)2

+ iv(x0, y0) + ivx(x0, y0)(x − x0) + ivy(x0, y0)(y − y0) + ϕ2(x, y) ·
√

(x − x0)2 + (y − y0)2,

that is,

f(z) = f(z0) + [ux(x0, y0) + ivx(x0, y0)] (x − x0) + [uy(x0, y0) + ivy(x0, y0)] (y − y0)

+ (ϕ1(x, y) + ϕ2(x, y)) · |z − z0|.

Using the Cauchy-Riemann equations, the difference quotient can be written as

f(z) − f(z0)

z − z0
= ux(x0, y0)

[(x − x0) + i(y − y0)]

z − z0
+ ivx(x0, y0)

[(x − x0) + i(y − y0)]

z − z0

+ (ϕ1(x, y) + ϕ2(x, y)) · |z − z0|
z − z0

,

that is,

f(z)− f(z0)

z − z0
= ux(x0, y0) + ivx(x0, y0) + (ϕ1(x, y) + ϕ2(x, y)) · |z − z0|

z − z0
.

Now, as z → z0, since

∣
∣
∣
∣

|z − z0|
z − z0

∣
∣
∣
∣
= 1 and ϕ1(x, y) → 0 and ϕ2(x, y) → 0, then

f ′(z0) = lim
z→z0

f(z) − f(z0)

z − z0

exists and equals ux(x0, y0) + ivx(x0, y0).



The following sufficient conditions for differentiability follow directly from the Cauchy-Riemann Theorem:

Theorem.

If the function f(z) = u(x, y) + iv(x, y) is defined on an ε-neighborhood of a point z0 = x0 + iy0, and

(a) The first-order partial derivatives of the functions u and v with respect to x and y exist everywhere in
this ε-neighborhood;

(b) The first-order partial derivatives of u and v are continuous at (x0, y0) and satisfy the Cauchy-Riemann
equations

ux = vy and uy = −vx

at the point (x0, y0),

then f ′(z0) exists, and is given by f ′(z0) = ux(x0, y0) + ivx(x0, y0).


