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Question 1.

Solve the vibrating circular membrane problem for the radially symmetric case, that is, solve the initial value
– boundary value problem

∂2u

∂t2
=

4

r

∂

∂r

(
r
∂u

∂r

)
, 0 ≤ r ≤ 1, t ≥ 0

u(1, t) = 0,

u(r, 0) = 5J0 (z3 r)

∂u

∂t
(r, 0) = 0, 0 ≤ r ≤ 1,

where J0(z) denotes the Bessel function of the first kind of order zero, and zn denotes the nth zero of J0(z).

Solution: We use separation of variables, assuming u(r, t) = φ(r) · T (t), the wave equation above becomes

4

r
(rφ′)

′ · T = φ · T ′′,

and dividing by 4 φ · T, the variables are separated, and we get

(rφ′(r))
′

rφ(r)
=

T ′′(t)

4 T (t)
.

The two sides of this equation must be a constant, say −λ, which yields two ordinary differential equations

(rφ′)
′
+ λ r φ = 0, 0 ≤ r ≤ 1

T ′′ + 4λ T = 0, t ≥ 0.

The boundary condition u(1, t) = 0 for all t ≥ 0 is satisfied if we require

φ(1) = 0.

Also, since r = 0 is a singular point of the differential equation for φ, we add the requirement

|φ(r)| bounded at r = 0,

which is equivalent to requiring that |u(r, t)| be bounded at r = 0.

Thus, φ satisfies the boundary value problem

(rφ′)
′
+ λ r φ = 0, 0 ≤ r ≤ 1

φ(1) = 0,

|φ(r)| bounded at r = 0.



We multiply the equation by r and recognize the equation

r2φ′′ + rφ′ + λ r2φ = 0

as Bessel’s equation of order zero, of which the function

φ(r) = J0(
√

λ r)

is the solution bounded at r = 0.

In order to satisfy the boundary condition φ(1) = 0, we must have

J0(
√

λ) = 0,

or √
λn = zn, n = 1, 2, . . .

where zn are the zeros of the function J0.

Therefore the eigenfunctions and eigenvalues of the boundary value problem satisfied by φ(r) are

φn(r) = J0(
√

λn r) and λn = z2
n

for n ≥ 1.

For these values of λ which give a nontrivial solution to the boundary value problem for φ, the differential
equation for T is

T ′′(t) + 4λn T (t) = 0

with general solution

Tn(t) = an cos 2
√

λn t + bn sin 2
√

λn t,

for n ≥ 1.

For each n ≥ 1, the product solution
un(r, t) = φn(r) · Tn(t)

to the original partial differential equation satisfies the boundary condition u(1, t) = 0 and the boundedness
condition |u(r, t)| bounded at r = 0 for all t ≥ 0.

Using the superposition principle we write the solution as

u(r, t) =

∞∑

n=1

J0(
√

λn r)
[
an cos 2

√
λn t + bn sin 2

√
λn t

]
.

The initial conditions are satisfied if

u(r, 0) =
∞∑

n=1

anJ0(
√

λn r) = 5J0 (z3 r)

∂u

∂t
(r, 0) =

∞∑

n=1

2bn

√
λnJ0(

√
λn r) = 0,

for 0 ≤ r ≤ 1.

Using the fact that the eigenfunctions {J0(
√

λn r)}n≥1 are orthogonal on the interval [0, 1] with respect to
the weight function σ(r) = r, we see that an = 0 for all n 6= 3, and a3 = 5, while bn = 0 for all n ≥ 1.

Therefore the solution is
u(r, t) = 5J0 (z3 r) cos 2z3t

for 0 ≤ r ≤ 1, t ≥ 0, where z3 is the third zero of J0(z).



Question 2. [p 352, #8.2.2(b)]

Solve the heat equation with time-dependent sources and boundary conditions:

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t)

u(x, 0) = f(x)

Reduce the problem to one with homogeneous boundary conditions if

u(0, t) = A(t) and
∂u

∂x
(L, t) = B(t).

Hint: First use u(x, t) = w(x, t) + v(x, t) and assume that v satisfies just the boundary conditions (and
nothing else), then use the method of eigenfunction expansions to solve for w(x, t).

Solution: If u(x, t) is a solution to the problem (∗), we reduce the problem to one with homogeneous
boundary conditions by writing

u(x, t) = v(x, t) + w(x, t)

where v(x, t) satisfies only the boundary conditions

v(0, t) = A(t) (∗∗)

∂v

∂x
(L, t) = B(t)

for t ≥ 0. We take the simplest possible such function, namely,

v(x, t) = B(t) x + A(t),

then
u(x, t) = w(x, t) + B(t) x + A(t),

and
∂u

∂t
=

∂w

∂t
+

dB(t)

dt
x +

dA(t)

dt
,

and
∂2u

∂x2
=

∂2w

∂x2
.

Therefore
∂w

∂t
= k

∂2w

∂x2
− dB(t)

dt
x − dA(t)

dt
+ Q(x, t).

Also,
A(t) = u(0, t) = w(0, t) + A(t) so that w(0, t) = 0,

while

B(t) =
∂u

∂x
(L, t) =

∂w

∂x
(L, t) + B(t) so that

∂w

∂x
(L, t) = 0.

Therefore, w(x, t) satisfies the problem with homogeneous boundary condtions given by

∂w

∂t
= k

∂2w

∂x2
− dB(t)

dt
x − dA(t)

dt
+ Q(x, t), 0 ≤ x ≤ L, t ≥ 0 (∗ ∗ ∗)

w(0, t) = 0, t ≥ 0

∂w

∂x
(L, t) = 0, t ≥ 0

w(x, 0) = f(x) − B(0) x − A(0), 0 ≤ x ≤ L.



The initial value – boundary value problem for w(x, t) is now a nonhomogeneous equation, however, it has
homogeneous boundary conditions.

As is usual with nonhomogeneous equations, we first find the solution to the homogeneous problem

∂w

∂t
= k

∂2w

∂x2

w(0, t) = 0

∂w

∂x
(L, t) = 0

using separation of variables. Assuming a solution of the form w(x, t) = φ(x) · T (t), we get two ordinary
differential equations:

φ′′(x) + λφ(x) = 0, 0 ≤ x ≤ L, T ′(t) + λk T (t) = 0, t ≥ 0,

φ(0) = 0

φ′(L) = 0

The eigenvalues are

λn =

(
(2n − 1)π

2L

)2

with corresponding eigenfunctions

φn(x) = sin (2n−1)π
2L x

for n ≥ 1.

Now, we are not solving the T equation and finding the general solution to the homogeneous problem, instead
we use the method of eigenfunction expansions to write the solution w(x, t) to (∗ ∗ ∗), the nonhomogeneous
problem, in terms of the eigenfunctions of the homogeneous problem:

w(x, t) =

∞∑

n=1

an(t) sin (2n−1)π
2L x, (†)

where (similar to the method of variation of parameters) the coefficients an(t) depend on t.

Next, we force this to be a solution to the equation (∗ ∗ ∗) by requiring that each an(t) satisfies a first-order
ordinary differential equation together with an initial condition. We look at the initial conditions first, when
t = 0 we want

w(x, 0) = f(x) − B(0) x − A(0) =

∞∑

n=1

an(0) sin (2n−1)π
2L x,

and from the orthogonality of the eigenfunctions on the interval [0, L], we need

an(0) =
2

L

∫ L

0

[f(x) − B(0) x − A(0)] sin (2n−1)π
2L x dx

for n ≥ 1.



Now from (†) we have

∂w

∂t
=

∞∑

n=1

dan(t)

dt
sin (2n−1)π

2L x and
∂2w

∂x2
= −

∞∑

n=1

an(t)
(

(2n−1)π
2L

)2

sin (2n−1)π
2L x,

and substituting these expressions into the equation (∗ ∗ ∗), after some simplification, we obtain

∞∑

n=1

[
dan

dt
+ kλn an

]
sin (2n−1)π

2L x = −dB(t)

dt
x − dA(t)

dt
+ Q(x, t).

The left-hand side of this equation is just the generalized Fourier series of the function

g(x, t) = −dB(t)

dt
x − dA(t)

dt
+ Q(x, t),

so that

dan

dt
+ kλn an =

2

L

∫ L

0

g(x, t) sin (2n−1)π
2L x dx = Gn(t), (††)

and an(t) satisfies the initial-value problem

dan(t)

dt
+ kλn an(t) = Gn(t), t ≥ 0

an(0) =
2

L

∫ L

0

[f(x) − B(0) x − A(0)] sin (2n−1)π
2L x dx.

Multiplying by the integrating factor eλn kt, this we can solve this first-order linear equation to get

an(t) = an(0)e−λn kt + e−λn kt

∫ t

0

Gn(s)eλn ks ds, t ≥ 0

for n ≥ 1.

The solution to the original equation is

u(x, t) = B(t) x + A(t) +

∞∑

n=1

an(t) sin
√

λn x

for 0 ≤ x ≤ L, t ≥ 0, where

λn =

(
(2n − 1)π

2L

)2

for n ≥ 1.



Question 3. [p 353, #8.2.3]

Solve the two-dimensional heat equation with circularly symmetric time-independent sources, boundary
conditions, and initial conditions (inside a circle):

∂u

∂t
=

k

r

∂

∂r

(
r
∂u

∂r

)
+ Q(r)

with
u(r, 0) = f(r) and u(a, t) = T.

Solution: We first convert the problem into one with homogeneous boundary conditions and then use the
method of egenfunction expansions to solve the nonhomogeneous equation that results.

Step 1: In order to get a problem with homogeneous boundary conditions we write

u(r, t) = v(r) + w(r, t)

where v(r), the steady-state or equilibrium solution, satisfies

∇2v =
1

r

∂

∂r

(
r
∂v

∂r

)
= 0, 0 ≤ r ≤ a,

v(a) = T, t ≥ 0,

then
∂u

∂t
=

∂v

∂t
+

∂w

∂t
=

∂w

∂t
,

and
∇2u = ∇2v + ∇2w = ∇2w.

Therefore, w(r, t) satisfies the initial value – boundary value problem

∂w

∂t
=

k

r

∂

∂r

(
r
∂w

∂r

)
+ Q(r)

w(a, t) = 0

w(r, 0) = f(r) − v(r)

We solve the v-problem first to get the constant solution

v(r) = T

for 0 ≤ r ≤ a, so that u(r, t) = w(r, t) + T, and w satisfies the nonhomogeneous equation with homogeneous
boundary conditions:

∂w

∂t
=

k

r

∂

∂r

(
r
∂w

∂r

)
+ Q(r) (∗)

w(a, t) = 0

w(r, 0) = f(r) − T.



Step 2: Next we find the eigenvalues and eigenfunctions for the corresponding homogeneous problem:

∂w

∂t
=

k

r

∂

∂r

(
r
∂w

∂r

)
(∗∗)

w(a, t) = 0

|w(r, t)| bounded at r = 0,

were we have imposed the boundedness condition on physical grounds.

Using separation of variables, we assume that w(r, t) = φ(r) · T (t), and separating variables we get

(rφ′)
′
+ λ r φ = 0, 0 ≤ r ≤ a

T ′ + λ k T = 0, t ≥ 0.

The boundary condition u(a, t) = 0 for all t ≥ 0 is satisfied if we require

φ(a) = 0.

Also, since r = 0 is a singular point of the differential equation for φ, we add the requirement

|φ(r)| bounded at r = 0,

which is equivalent to requiring that |w(r, t)| be bounded at r = 0.

Thus, φ satisfies the boundary value problem

(rφ′)
′
+ λ r φ = 0, 0 ≤ r ≤ a

φ(a) = 0,

|φ(r)| bounded at r = 0.

We multiply the equation by r and recognize the equation

r2φ′′ + rφ′ + λ r2φ = 0

as Bessel’s equation of order zero, of which the function

φ(r) = J0(
√

λ r)

is the solution bounded at r = 0.

In order to satisfy the boundary condition φ(a) = 0, we must have

J0(
√

λ a) = 0,

or √
λn a = zn, n = 1, 2, . . .

where zn are the zeros of the function J0.

Therefore the eigenfunctions and eigenvalues of the boundary value problem satisfied by φ(r) are

φn(r) = J0(
√

λn r) and λn =
z2

n

a2

for n ≥ 1.



Step 3: Now we use an eigenfunction expansion for w(r, t) as

w(r, t) =

∞∑

n=1

an(t)J0(
√

λn r)

and determine the coefficients an(t) so that w(r, t) is a solution to the nonhomogeneous equation

∂w

∂t
=

k

r

∂

∂r

(
r
∂w

∂r

)
+ Q(r) (∗)

w(a, t) = 0

w(r, 0) = f(r) − T,

and this means we will need the Fourier-Bessel Series for Q(r) and f(r) − T :

Q(r) =

∞∑

n=1

qnJ0(
√

λn r), with qn =

∫ a

0

J0(
√

λn r)Q(r)r dr

∫ a

0

J0(
√

λn r)2r dr

f(r) − T =

∞∑

n=1

fnJ0(
√

λn r), with fn =

∫ a

0

J0(
√

λn r)(f(r) − T )r dr

∫ a

0

J0(
√

λn r)2r dr

.

Substituting these expansions into (∗), we have

∞∑

n=1

dan(t)

dt
J0(
√

λn r) =

∞∑

n=1

an(t)(−λn)J0(
√

λn r) +

∞∑

n=1

qnJ0(
√

λn r),

and using the orthogonality of the eigenfunctions, the coefficients an(t) satisfy the linear differential equation

dan(t)

dt
+ λnan(t) = qn, t ≥ 0

for n ≥ 1.

From the initial condition

w(r, 0) =
∞∑

n=1

an(0)J0(
√

λn r) = f(r) − T =
∞∑

n=1

fnJ0(
√

λn r),

using the orthogonality again, we have
an(0) = fn

for n ≥ 1.

Therefore, an(t) satisfies the initial value problem

dan(t)

dt
+ λnan(t) = qn, t ≥ 0

an(0) = fn

for n ≥ 1.



Multiplying by the integrating factor eλnt, the differential equation becomes

d

dt

(
an(t)eλnt

)
= qneλnt,

and integrating,

an(t)eλnt − an(0) =

∫ t

0

qneλns ds,

so that

an(t) = an(0)e−λnt +

∫ t

0

qne−λn(t−s) ds = an(0)e−λnt +
qn

λn

(
1 − e−λnt

)
, t ≥ 0

for n ≥ 1.

Step 4: Putting everything together, the solution is

u(r, t) = v(r) + w(r, t) = T +

∞∑

n=1

an(t)J0(
√

λn r),

that is,

u(r, t) = T +
∞∑

n=1

[
qn

λn
+

(
fn − qn

λn

)
e−λnt

]
J0(
√

λn r)

for 0 ≤ r ≤ a, t ≥ 0, where λn =
z2

n

a2
, and

qn =

∫ a

0

J0(
√

λn r)Q(r)r dr

∫ a

0

J0(
√

λn r)2r dr

,

fn =

∫ a

0

J0(
√

λn r)(f(r) − T )r dr

∫ a

0

J0(
√

λn r)2r dr

for n ≥ 1.



Question 4. [p 358, #8.3.2]

Consider the heat equation with a steady source

∂u

∂t
= k

∂2u

∂x2
+ Q(x)

subject to the initial and boundary conditions:

u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f(x).

Obtain the solution by the method of eigenfunction expansion. Show that the solution approaches a steady-
state solution.

Solution: Since the problem already has homogeneous boundary conditions, we consider the corresponding
homogeneous problem:

∂u

∂t
= k

∂2u

∂x2
, 0 ≤ x ≤ L, t ≥ 0

u(0, t) = 0, t ≥ 0

u(L, t) = 0, t ≥ 0.

The eigenvalues and eigenfunctions for this problem are

λn =
n2π2

L2
and φn(x) = sin nπ

L x

for n ≥ 1.

We write the solution to the nonhomogeneous problem as an expansion in terms of these eigenfunctions:

u(x, t) =

∞∑

n=1

an(t) sin nπ
L x,

and determine the coefficients an(t) which force this to be a solution to the nonhomogeneous problem.

We will need the eigenfunction expansions for Q(x) and f(x) :

Q(x) =

∞∑

n=1

qn sin nπ
L x, with qn =

2

π

∫ L

0

Q(x) sin nπ
L x dx

f(x) =
∞∑

n=1

fn sin nπ
L x, with fn =

2

π

∫ L

0

f(x) sin nπ
L dx.

Substituting these expansions into the nonhomogeneous equation

∂u

∂t
= k

∂2u

∂x2
+ Q(x),

we obtain
∞∑

n=1

d an(t)

dt
sin nπ

L x = −
∞∑

n=1

k
n2π2

L2
an(t) sin nπ

L x +

∞∑

n=1

qn sin nπ
L x,

and using the orthogonality of the eigenfunctions on the interval [0, L], the coefficients an(t) satisfy the initial
value problem

d an(t)

dt
+

n2π2

L2
k an(t) = qn, t ≥ 0

an(0) = fn

for n ≥ 1.



The solution to this initial value problem is

an(t) = fne−
n2π2

L2 kt + qn

∫ t

0

e−
n2π2

L2 k(t−s) ds,

that is,

an(t) =
qn

k n2π2

L2

+

(
fn − qn

k n2π2

L2

)
e−

n2π2

L2 kt, t ≥ 0

for n ≥ 1.

Note that since k > 0, we have lim
t→∞

an(t) =
qn

k n2π2

L2

for n ≥ 1.

The solution to the heat equation with a steady source is therefore

u(x, t) =

∞∑

n=1

[
qn

k n2π2

L2

+

(
fn − qn

k n2π2

L2

)
e−

n2π2

L2 kt

]
sin nπ

L x

for 0 ≤ x ≤ L and t ≥ 0.

For large value of t, this solution approaches r(x) where

r(x) = lim
t→∞

u(x, t) =

∞∑

n=1

qn

k n2π2

L2

sin nπ
L x

for 0 ≤ x ≤ L, where

qn =
2

π

∫ L

0

Q(x) sin nπ
L x dx

for n ≥ 1.

Differentiating this twice with respect to x, we see that

r′′(x) = −
∞∑

n=1

qn

k
sin nπ

L x = −1

k
Q(x),

and since r(0) = r(L) = 0, then the function r(x) satisfies the boundary value problem

k
d2r

dx2
+ Q = 0, 0 ≤ x ≤ L

r(0) = 0

r(L) = 0,

which is exactly the boundary value problem for the steady state solution, that is, r(x) is the steady state
or equilibrium solution to the original heat flow problem.



Question 5. [p 455, #10.3.1(a)]

(a) Show that the Fourier transform is a linear operator; that is, show that

F [c1f(x) + c2g(x)] = c1F (ω) + c2G(ω)

(b) Show that F [f(x)g(x)] 6= F (ω)G(ω).

Solution:

(a) If the Fourier transforms of f and g both exist, then

F [c1f(x) + c2g(x)] =
1

2π

∫ ∞

−∞

(c1f(x) + c2g(x)) eiωx dx

=
c1

2π

∫ ∞

−∞

f(x)eiωx dx +
c2

2π

∫ ∞

−∞

g(x)eiωx dx

= c1F (f(x)) + c2F (g(x)) ,

that is,
F [c1f(x) + c2g(x)] = c1F (f(x)) + c2F (g(x))

and the Fourier transform is a linear operator.

(b) If f and g are functions such that F(f(x)) = F (ω) and F(g(x)) = G(ω) both exist, then

F−1 (F (ω) G(ω)) =
1

2π
f ∗ g =

1

2π

∫ ∞

−∞

f(t)g(x − t) dt 6= f(x) · g(x),

and taking the Fourier transform of both sides,

F [f(x)g(x)] 6= F (ω)G(ω).

Question 6. [p 456, #10.3.5]

If F (ω) is the Fourier transform of f(x), show that the inverse Fourier transform of eiωβF (ω) is f(x − β).
This result is known as the Shift Theorem for Fourier transforms.

Solution: We have

F−1
(
eiωβF (ω)

)
=

∫ ∞

−∞

F (ω)eiωβe−iωx dω

=

∫ ∞

−∞

F (ω)e−iω(x−β) dω

= f(x − β).



Question 7. [p 469, #10.4.4]

(a) Solve

∂u

∂t
= k

∂2u

∂x2
− γu, −∞ < x < ∞, t > 0

u(x, 0) = f(x), −∞ < x < ∞.

(b) Does your solution suggest a simplifying transformation?

Solution:

(a) If u(x, t) is the solution to

∂u

∂t
= k

∂2u

∂x2
− γu, −∞ < x < ∞, t > 0

u(x, 0) = f(x), −∞ < x < ∞,

let
û(ω, t) = F(u(x, t)) and û(ω, 0) = f̂(ω),

then û(ω, t) satisfies the initial value problem

∂û

∂t
= −(kω2 + γ)û, t ≥ 0

û(ω, 0) = f̂(ω),

with solution
û(ω, t) = f̂(ω)e−(kω2+γ)t = f̂(ω)e−kω2te−γt.

The solution to the partial differential equation is

u(x, t) = F−1 (û(ω, t))

= F−1
(
f̂(ω)e−kω2te−γt

)

= e−γtF−1
(
f̂(ω)e−kω2t

)
(since F−1 is linear)

=
1

2π
e−γt f ∗ g (x, t)

where

g(x, t) =
e−x2/4kt

√
4πkt

.

Therefore

u(x, t) = e−γt

∫ ∞

−∞

f(s)
e−(x−s)2/4kt

√
4πkt

ds

for −∞ < x < ∞ and t > 0.



(b) If we multiply the solution above by eγt, we find

eγtu(x, t) = f ∗ G (x, t),

which looks like the solution to a homogeneous heat equation.

Indeed, if we define
w(x, t) = eγtu(x, t),

then

∂w

∂t
= γeγtu + eγt ∂u

∂t

= γw + eγt

(
k

∂2u

∂x2
− γu

)

= γw + k
∂2w

∂x2
− γw,

so that

∂w

∂t
= k

∂2w

∂x2

w(x, 0) = f(x)

for −∞ < x < ∞, t > 0.

Question 8. [p 480, #10.5.12]

Solve

∂u

∂t
= k

∂2u

∂x2
, 0 < x < ∞, t > 0

∂u

∂x
(0, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < ∞.

Solution: Since the boundary condition is a Neumann condition, we use the Fourier cosine transform. Let

ũ(ω, t) = C(u(x, t)) =
2

π

∫ ∞

0

u(x, t) cosωx dx,

and

f̃(ω) = C(f(x)) =
2

π

∫ ∞

0

f(x) cos ωx dx,

then

C

(
∂u

∂t

)
=

∂ũ

∂t
(ω, t),

and

C

(
∂2u

∂x2

)
= − 2

π

∂u

∂x
(0, t) − ω2ũ(ω, t),

and from the boundary condition,
∂u

∂x
(0, t) = 0, so that

C

(
∂2u

∂x2

)
= −ω2ũ(ω, t).



After taking the Fourier cosine transform of both sides of the partial differential equation

∂u

∂t
= k

∂2u

∂x2
,

the transform ũ(ω, t) satisfies the initial value problem

∂ũ

∂t
(ω, t) + kω2ũ(ω, t) = 0

ũ(ω, 0) = f̃(ω),

with solution
ũ(ω, t) = ũ(ω, 0)e−ω2kt = f̃(ω)e−ω2kt

for −∞ < ω < ∞ and t > 0.

Therefore

u(x, t) =

∫ ∞

0

f̃(ω)e−ω2kt cosωx dω

for 0 < x < ∞ and t > 0.

Note that each of the functions f̃(ω), e−ω2kt, and cosωx in the integrand is an odd function of ω, so that
∫ ∞

0

f̃(ω)e−ω2kt cosωx dω =
1

2

∫ ∞

−∞

f̃(ω)e−ω2kt cosωx dω.

Since sin ωx is an odd function of ω, then
∫ ∞

−∞

f̃(ω)e−ω2kt sin ωx dω = 0,

and we can write the solution u(x, t) as

u(x, t) =
1

2

∫ ∞

−∞

f̃(ω)e−ω2kt(cosωx − i sin ωx) dω

=

∫ ∞

−∞

f̃(ω)

2
e−ω2kte−iωx dω,

that is,

u(x, t) = F−1

(
f̃(ω)

2
e−ω2kt

)
. (∗)

Let feven be the even extension of f(x) to (−∞,∞), then

f̃(ω)

2
=

1

2

2

π

∫ ∞

0

f(x) cosωx dx

=
1

2π

∫ ∞

−∞

feven(x) cos ωx dx

=
1

2π

∫ ∞

−∞

feven(x)(cos ωx + i sinωx) dx

=
1

2π

∫ ∞

−∞

feven(x)eiωx dx

= F (feven(x)) ,

so that

f̃(ω)

2
= F (feven(x)) . (∗∗)



From (∗) and (∗∗) it follows that u(x, t) is the solution to the initial value – boundary value problem

∂u

∂t
= k

∂2u

∂x2
, −∞ < x < ∞, t > 0

∂u

∂x
(0, t) = 0, t > 0

u(x, 0) = feven(x), 0 < x < ∞,

and therefore
u(x, t) = feven ∗ G (x, t)

where G(x, t) is the heat kernel or Gaussian kernel

G(x, t) =
1√

4πkt
e−x2/4kt.

The solution is then

u(x, t) = feven ∗ G (x, t)

=
1√

4πkt

∫ ∞

−∞

feven(s)e
−(x−s)2/4kt ds

=
1√

4πkt

∫ ∞

0

f(s)
(
e−(x+s)2/4kt + e−(x−s)2/4kt

)
ds,

so that

u(x, t) =
1√

4πkt

∫ ∞

0

f(s)
(
e−(x+s)2/4kt + e−(x−s)2/4kt

)
ds

for 0 < x < ∞, t > 0.


