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Question 1.

Solve the vibrating circular membrane problem for the radially symmetric case, that is, solve the initial value
— boundary value problem

0u 4 0 ou
ot2 T@r(rar)’ Osrsl, =20
u(1,t) =0,

u(r,0) = 5Jg (z371)

%(T,O):O, 0<r<1,

where Jy(z) denotes the Bessel function of the first kind of order zero, and z,, denotes the n'® zero of Jo(z).

SOLUTION: We use separation of variables, assuming u(r,t) = ¢(r) - T(¢t), the wave equation above becomes
) T=0T",

and dividing by 4 ¢ - T, the variables are separated, and we get

o)) T(0)
ro(r) 4T(t)

The two sides of this equation must be a constant, say —\, which yields two ordinary differential equations

(r¢') +Ar¢=0, 0<r<1
T" +4\T =0, t>0.
The boundary condition u(1,t) = 0 for all ¢ > 0 is satisfied if we require
(1) =0.
Also, since r = 0 is a singular point of the differential equation for ¢, we add the requirement
|¢(r)| bounded at r =0,

which is equivalent to requiring that |u(r,t)| be bounded at r = 0.
Thus, ¢ satisfies the boundary value problem
(r¢/) +Ar¢=0, 0<r<1
¢(1) =0,
|¢(r)] bounded at r =0.



We multiply the equation by r and recognize the equation
r2¢" +rd + Arip =0
as Bessel’s equation of order zero, of which the function
6(r) = Jo(VAT)

is the solution bounded at r = 0.

In order to satisfy the boundary condition ¢(1) = 0, we must have

or
VAIn=2n, n=12 ...

where z,, are the zeros of the function Jj.

Therefore the eigenfunctions and eigenvalues of the boundary value problem satisfied by ¢(r) are

On(r) = Jo(mr) and Ay = zfl

for n > 1.

For these values of A\ which give a nontrivial solution to the boundary value problem for ¢, the differential
equation for T is
T"(t) + 44X\, T(t) =0

with general solution
Tn(t) = an cos2y/ At + by sin 24/ A, ¢,

for n > 1.

For each n > 1, the product solution
Un(r,t) = dn(r) - Tp(t)

to the original partial differential equation satisfies the boundary condition u(1,¢) = 0 and the boundedness
condition |u(r,t)| bounded at r = 0 for all £ > 0.

Using the superposition principle we write the solution as

u(r,t) = Z Jo(v/ Anr) {an cos2v/ A t + by, sin2mt} .
n=1

The initial conditions are satisfied if

u(r,0) = Z anJo(\/Anr) = 5Jo (237)

@(r, 0) =3 2buv/AnJo(v/ An ) =0,
ot <
for0 <r <1.

Using the fact that the eigenfunctions {Jo(v/A, 7)}n>1 are orthogonal on the interval [0, 1] with respect to
the weight function o(r) = r, we see that a,, = 0 for all n # 3, and ag = 5, while b,, = 0 for all n > 1.
Therefore the solution is

u(r,t) = 5Jy (23 1) cos 2zst

for 0 <r <1, t>0, where z3 is the third zero of Jy(z).



Question 2. [p 352, #8.2.2(b)]

Solve the heat equation with time-dependent sources and boundary conditions:

ou 0%u
— =k— t
5 = Koz T Q1)
u(z,0) = f(x)
Reduce the problem to one with homogeneous boundary conditions if
u(0,t) = A(t) and ?(L, t) = B(t).
x

Hint: First use u(z,t) = w(x,t) + v(x,t) and assume that v satisfies just the boundary conditions (and
nothing else), then use the method of eigenfunction expansions to solve for w(x,t).

SoruTION: If u(x,t) is a solution to the problem (x), we reduce the problem to one with homogeneous
boundary conditions by writing
u(z,t) = v(z, t) + w(zx,t)

where v(z,t) satisfies only the boundary conditions

v(0,t) = A(t) (*x)
ov
2 (L0 = B

for t > 0. We take the simplest possible such function, namely,

v(z,t) = B(t)x + A(t),

then
ul(z, 1) = wie,t) + B() o + A1),
and
@ B 8_w dB(t) dA(t)
ot ot at " dt
and
Pu_ o
ox2 92’
Therefore 5 52 B (1) JA®H)
w w t t
T R T + Q1)
Also,
A(t) = u(0,t) = w(0,t) + A(t) so that w(0,t) =0,
while 5 P P
u w w
B(t) = a(LJS) = g(L,t) + B(%) so that g(L,t) =0.

Therefore, w(x,t) satisfies the problem with homogeneous boundary condtions given by

- =k—— - — 7

ot Ox2? dt ©dt
w(0,8)=0, t>0

2
ow _ 0w dBY) - dA®) o n 0<w<L, t>0 (%% %)

ow
_— = >
o (L,t)=0, t>0



The initial value — boundary value problem for w(x,t) is now a nonhomogeneous equation, however, it has
homogeneous boundary conditions.

As is usual with nonhomogeneous equations, we first find the solution to the homogeneous problem

ow _
ot 0zx2

w(0,t) =0

ow

—(L,t) =

6$( ?) 0

using separation of variables. Assuming a solution of the form w(x,t) = ¢(x) - T(t), we get two ordinary
differential equations:

" (z) + Ap(z) = 0<z<L, T'(t)+ kT (t) =0, t>0,

<

—~
(=)

~
|

0,
0
0

o
=
I

The eigenvalues are
A = (2n — 1)\ >
2L

¢n(x) = sin WI

with corresponding eigenfunctions

for n > 1.
Now, we are not solving the T equation and finding the general solution to the homogeneous problem, instead

we use the method of eigenfunction expansions to write the solution w(x,t) to (* % %), the nonhomogeneous
problem, in terms of the eigenfunctions of the homogeneous problem:

Zan ) sin & 1)7Tx, (1)

where (similar to the method of variation of parameters) the coefficients a,,(t) depend on t.
Next, we force this to be a solution to the equation (x % x) by requiring that each a,,(t) satisfies a first-order

ordinary differential equation together with an initial condition. We look at the initial conditions first, when
t = 0 we want

w(z,0) = f(x) — B(0)z Z a, (0) sin 22 Ll)w x,

and from the orthogonality of the eigenfunctions on the interval [0, L], we need

L
an(0) = 7 /0 [f(z) — B(0) = — A(0)] sin @17 4 g

for n > 1.



Now from (}) we have

o) — da (t n—Dr n—1)r n—1r
8_1:: 1 adt()sin (2 2L1) x and Zan (2 ) ) sin 2 2L1) x,

and substituting these expressions into the equation (x  *), after some simplification, we obtain

dan, _ dB(t) dA(t)
Gln (2n—1)m - _ _
E {dt + kA, an} sin 5w T o + Q(z,t).

n=1
The left-hand side of this equation is just the generalized Fourier series of the function

aB) | dA()

- 2 4 QU ,

g(CC,t) = -
so that

L
dan  n, an_E/ g(@, t)sin EDT 0 ge = G (1), (t1)
dt L Jy

and ay,(t) satisfies the initial-value problem

day,(t)

knnt:ntv t >
22 kA an(t) = Galt), >0

L
an(O):%/O [f(z) — B(0) z — A(0)] sin @214 dy.

Ankt this we can solve this first-order linear equation to get

Multiplying by the integrating factor e
t

an(t) = a,(0)e ™ F 4 e=An kt/ Gn(s)er*ds, t>0
0

for n > 1.

The solution to the original equation is

u(z,t) = B(t)xz + A(t +Zan sin /A, @

for 0 <z <L, t >0, where

for n > 1.



Question 3. [p 353, #8.2.3]

Solve the two-dimensional heat equation with circularly symmetric time-independent sources, boundary
conditions, and initial conditions (inside a circle):

ou_ ko ( ou
ot ror

ra> +Q(r)

with
u(r,0) = f(r) and u(a,t) =T.

SOLUTION: We first convert the problem into one with homogeneous boundary conditions and then use the
method of egenfunction expansions to solve the nonhomogeneous equation that results.

Step 1: In order to get a problem with homogeneous boundary conditions we write
u(r, t) = v(r) + w(r,t)

where v(r), the steady-state or equilibrium solution, satisfies

V%}z%% (r%)—o, 0<r<a,

v(ia) =T, t>0,

then
Oou Ov Ow Ow
o ot Tt ot
and
V2u = Vi + Vw = Vw.

Therefore, w(r, t) satisfies the initial value — boundary value problem

ow kO [ ow
o~ ror <a_> + Q)
w(a,t) =0

w(r,0) = f(r) —v(r)

We solve the v-problem first to get the constant solution
o(ir)=T

for 0 < r < a, so that u(r,t) = w(r,t) + T, and w satisfies the nonhomogeneous equation with homogeneous
boundary conditions:

ow_ ko (o
ot ror

1) + Qo) (¥
w(a,t) =0

w(r,0) = f(r) —=T.



Step 2: Next we find the eigenvalues and eigenfunctions for the corresponding homogeneous problem:

ow k0 [ Ow
BZZ;E(W%> (%)
w(a,t) =0
|w(r,t)] bounded at r =0,
were we have imposed the boundedness condition on physical grounds.
Using separation of variables, we assume that w(r,t) = ¢(r) - T'(¢), and separating variables we get
(r¢’)/+/\7’¢):0, 0<r<a
T +XkT =0, t>0.
The boundary condition u(a,t) = 0 for all ¢ > 0 is satisfied if we require
¢(a) = 0.
Also, since r = 0 is a singular point of the differential equation for ¢, we add the requirement
|¢(r)] bounded at r =0,
which is equivalent to requiring that |w(r,t)| be bounded at r = 0.
Thus, ¢ satisfies the boundary value problem
(r¢/)l+/\7’¢):0, 0<r<a
¢(a) =0,
|¢(r)] bounded at = =0.

We multiply the equation by r and recognize the equation
r2¢" +rd + Arip =0
as Bessel’s equation of order zero, of which the function
é(r) = Jo(VAr)
is the solution bounded at r = 0.
In order to satisfy the boundary condition ¢(a) = 0, we must have
Jo(Vxa) =0,

or
\/Ea:zn, n=1,2 ...

where z,, are the zeros of the function Jj.

Therefore the eigenfunctions and eigenvalues of the boundary value problem satisfied by ¢(r) are

6u(r) = Jo(v/Aur)  and %=§

for n > 1.



Step 3: Now we use an eigenfunction expansion for w(r,t) as

w(r,t) = an(t)Jo(v/An )
n=1

and determine the coefficients a,,(t) so that w(r,t) is a solution to the nonhomogeneous equation

dw_ko (o
ot ror

1) + Qo) (¥
w(a,t) =0
w(r,0) = f(r) =T,

and this means we will need the Fourier-Bessel Series for Q(r) and f(r) — T
/ Jo(v/ An r)Q(r)r dr

0

/ Jo(\/ Anr)rdr

0

Q)= ando(vVAnr),  with gy =
n=1

/0 () () — Thrdr
/0‘1 Jo(\/ A r)2rdr '

FO)=T=> fado(VAnr),  with  f, =
n=1

Substituting these expansions into (), we have

S dagt(t) To(Vram) =3 an®(=Aa) TV A ) + 3 ano(V/Aa 1),
n=1 ne1 —

and using the orthogonality of the eigenfunctions, the coefficients a,,(t) satisfy the linear differential equation

day, (t)
dt

+)\nan(t) =(gn, t20
for n > 1.

From the initial condition
w(ﬁ O) = Z an(O)JO( V An T) = f(?") -T= Z fnJO(\/ An T)7
n=1 n=1

using the orthogonality again, we have
2% (O) = fa

for n > 1.

Therefore, ay,(t) satisfies the initial value problem

day, (t)
dt

+ Apan(t) =gn, t>0

an(()) = fn

for n > 1.



An

Multiplying by the integrating factor e*»?, the differential equation becomes

d
pn (an(t)e)\nt) = QneA"ta

and integrating,
t
a0 = a,(0) = [ gne ds,
0

so that

t
an(t) = a,(0)e ! 4 / gne (%) ds = a, (0)e ' + i—" (L—e*f), t>0
0 n

for n > 1.
Step 4: Putting everything together, the solution is
u(r,t) =v(r) +w(rt) =T+ Y an(t)Jo(v/An 1),
n=1

that is,

u(r,t) =T+ nil K—: + (fn - i—’;) e*"ﬂ Jo(V/ Anr)

2
for 0 <r <a, tZO,where)\n:Z—g,and
a
/ Jo(v/ An7)Q(r)r dr
0
dn = a )
/ Jo(V/ An 1) dr
0
/ Jo(WV A ) (f(r) — T)rdr
fn: g

/Oa Jo(\/ A r)2rdr

for n > 1.



Question 4. [p 358, #8.3.2]

Consider the heat equation with a steady source

ou_ 0
ot oz

subject to the initial and boundary conditions:

u(0,t) =0, u(L,t) =0, and u(z,0) = f(z).

+Q(x)

Obtain the solution by the method of eigenfunction expansion. Show that the solution approaches a steady-
state solution.

SOLUTION: Since the problem already has homogeneous boundary conditions, we consider the corresponding
homogeneous problem:

o
ot ox2’ -

u(0,t) =0, t>0
u(L,t) =0, ¢>0.
The eigenvalues and eigenfunctions for this problem are

2,2
An = % and ¢, (z) = sin 2z
for n > 1.

We write the solution to the nonhomogeneous problem as an expansion in terms of these eigenfunctions:
o0
u(z,t) = Z an(t) sin “F .,
n=1
and determine the coefficients a.,(t) which force this to be a solution to the nonhomogeneous problem.

We will need the eigenfunction expansions for Q(z) and f(z) :

Q(z) = Z Gn Sin T, with Gn = ;/0 Q(z)sin “Fx dx
n=1

f@) =3 fasinfFz,  with  fo= ;/0 f(z)sin 2X da.
n=1

Substituting these expansions into the nonhomogeneous equation

ou 0?

u
5 = k@ + Q(l‘),
we obtain
. dan(t) . N i 3 i
> P sin s = - 3k T an)sin o+ Y gsin
n=1 n=1 n=t

and using the orthogonality of the eigenfunctions on the interval [0, L], the coefficients a,,(t) satisfy the initial
value problem
dan(t) n*n?

—5kan(t) =qn, t=>

an(0) = f

for n > 1.



The solution to this initial value problem is

n271'2 t n27r2
)= o s [ BN

0

that is,

n Gn e

an(t): n2n2 + fn_ 2n? e L , t=0

L2 L2
for n > 1.
Note that since k > 0, we have lim a,(t) = q: > forn > 1.

t—o0 k"Lg

The solution to the heat equation with a steady source is therefore

> n27'r2
U(Iat) = Z ggﬂ_z + fn - 327;2 e L? kt sin %x
e k

n=1 2

for0<z < Landt>0.

For large value of ¢, this solution approaches r(x) where

o0

r(x) = tliglo u(x, t) = Zl n%2 sin Tz
n=1F7F

for 0 <z < L, where
2 L
an = —/ Q(z)sin 2Lz dx
™ Jo
for n > 1.

Differentiating this twice with respect to =, we see that

and since 7(0) = r(L) = 0, then the function r(x) satisfies the boundary value problem

d*r
r(0) =0
r(L) =0,

which is exactly the boundary value problem for the steady state solution, that is, r(x) is the steady state
or equilibrium solution to the original heat flow problem.



Question 5. [p 455, #10.3.1(a)]

(a) Show that the Fourier transform is a linear operator; that is, show that
Fleif(x) 4+ cog(2)] = e1 F(w) + c2G(w)

(b) Show that F [f(x)g(x)] # F(w)G(w).
SOLUTION:

(a) If the Fourier transforms of f and g both exist, then

Fleif(z) + cag(x)] = % 7°° (e1f (@) + eag(x)) €% da

c1 > W 2 * W
—W/_Oof(x)e dx + 5 /_Oog(x)e dx

= F (f(z)) + 2 F (g9(x)),

that is,
Fleif(@) + eaga)] = aoF (f(x)) + c2F (g(2))

and the Fourier transform is a linear operator.

(b) If f and g are functions such that F(f(z)) = F(w) and F(g(z)) = G(w) both exist, then
FUPWGW) = o Fra=o [ (e~ )it # 1) g(o)

and taking the Fourier transform of both sides,

Flf(@)g(x)] # F(w)G(w).

Question 6. [p 456, #10.3.5]

If F(w) is the Fourier transform of f(x), show that the inverse Fourier transform of e’ F(w) is f(z — 3).
This result is known as the Shift Theorem for Fourier transforms.

SOLUTION: We have

zwﬁ —iwx dw

)= m
/ Je—i(==) g,
f(z

- B).

FH(e™PF(w



Question 7. [p 469, #10.4.4]

(a) Solve
du 0%u
a: W—’}/’lh —OO<Q?<OO,t>O

u(z,0) = f(z), —oo<z<o0.

(b) Does your solution suggest a simplifying transformation ?
SOLUTION:

(a) If u(x,t) is the solution to

@—k@—u —co<x<oo,t>0
ot ~ “ogzz " ’
u(z,0) = f(z), —oo <z < o0,

let
U(w,t) = F(u(z,t)) and U(w,0) = fw),

then u(w,t) satisfies the initial value problem

ou

>
i —(kw® +7y)a, t>0
a(WJ O) = A(w)ﬂ

with solution N ) N )
U(w,t) = flw)e™ kN = f(w)e ke te™7t,

The solution to the partial differential equation is

u(z,t) = F 1 (U(w, b))

~

(w)efsztef’yt)

e (J?(w)e—kw%) (since F~' is linear)
1 ¢
=—e " fxrg(zt)
2
where
—x? /4kt
T,t) =
9(@,?) 4rkt
Therefore
(z— s) /4kt
(z,t)=e Vt/ f(8)——F==—4ds
Varkt

for —oco < x < oo and t > 0.



b) If we multiply the solution above by €7, we find
( p
eu(z,t) = f*G(x,t),

which looks like the solution to a homogeneous heat equation.

Indeed, if we define
w(z,t) = e u(z, t),

then
W _ ot vt 0U
AT
0%u
_ t
=~yw + " <kw — 7u)
2
=qw+ kw —Yw,
so that
ow _, 0w
ot 0z
w(z,0) = f(z)
for —co <z < o0, t>0.
Question 8. [p 480, #10.5.12]
Solve
ou 0%u
— =k— t
i 972 O<zx<oo, t>0
ou
—(0,t) =0, t>0
5y (1) =0, t>

u(z,0) = f(z), 0<x<oo.

SOLUTION: Since the boundary condition is a Neumann condition, we use the Fourier cosine transform. Let

t(w,t) = Clu(z,t)) = 2 /000 u(z,t) coswz dx,

™

and ) o
fw)y=C(f(z) = —/ f(z) coswaz dz,
™ Jo
then 5 o
C (E) = E(w,t),
and

0*u 20u 9~

and from the boundary condition, %(O, t) =0, so that
x

2
C (%) = —w?u(w, ).



After taking the Fourier cosine transform of both sides of the partial differential equation
ou 9%u
ot 9z’

the transform @(w, t) satisfies the initial value problem

ou

Er —(w,t) + kw?T(w,t) =0

u(w,0) = f(w),
with solution , _
U(w,t) = u(w,0)e ™ * = f(w)e v *
for —oco < w < oo and t > 0.

Therefore -
u(z,t) = / f(w)e“”%t coswx dw
0

for0 <z <ooandt>0.

Note that each of the functions f(w) e=“’k and coswz in the integrand is an odd function of w, so that

/ f —RE o8 war dw = / f b coswa dw.

Since sinwz is an odd function of w, then

/ f -’ Ft sin wa dw = 0,

and we can write the solution u(z,t) as

u(z,t) / f w)e ¥ “i (coswz — isinwz) dw

/ f 7w2kt 7zwac dw

o JT(W) —w?kt
u(z,t) = F! (Te k ) . (%)

that is,

Let foven be the even extension of f(z) to (—o0,00), then
f 12 [®
%@25;/0 f(z) coswz dx
= [ o) coson
= on ) Jeven x) coswz dx
1 [ o
= — / Seven(x)(coswzx + isinwz) dx
27 J_ o

1 e .
_7'{' ‘/_OO feven(x)elww dz

= F (feven(2)),

so that



From (%) and (xx) it follows that u(z,t) is the solution to the initial value — boundary value problem

ou 0%u

E: @, —o0o <z < o0, t>0
0

a—“(o,t):o, t>0

X

U(CC,O) = fcvcn(x), 0<x< oo,

and therefore
w(z,t) = foven * G (2, 1)

where G(z,t) is the heat kernel or Gaussian kernel

1
G(I,t) — m 6712/4kt'

The solution is then

u(x,t) = feven * G (z,1)
_ 1 /OO f (S)ef(xfs)z/élkt ds
/—47T]€t - even

1 & 2 2
_ 7(s) (67(m+s) [4kt 4 o—(z—s) /4kt) ds,
varkt /0

so that
e—(w+s)2/4kt+e—(m—s)2/4kt) ds

uot) = [ 166)

for0 <z <o0, t>0.



