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Question 1.

Small vertical vibrations u of a uniform vibrating string which is initially at rest are governed by the initial
value – boundary value problem

∂2u

∂t2
= c2

∂2u

∂x2

u(0, t) = 0, u(L, t) = 0 for 0 < x < L

u(x, 0) = f(x),
∂u

∂t
(x, 0) = 0 for t > 0.

Show that

u(x, t) =
1

2

[

F (x− ct) + F (x+ ct)

]

,

where F (x) is the odd periodic extension of f(x).

Hint : Use separation of variables to solve the problem and then use the addition formula for the sine function:

sin a cos b =
1

2

[

sin(a+ b) + sin(a− b)
]

to write the solution in the form shown above.

Solution: We assume a solution of the form

u(x, t) = X(t) · T (t)

and separating variables we have two ordinary differential equations

X ′′(x) + λX(x) = 0, 0 < x < L T ′′(t) + λc2T (t) = 0, t > 0

X(0) = 0 T ′(0) = 0.

X(L) = 0

The eigenvalues and eigenfunctions for the X-equation are

λn =
n2π2

L2
and Xn(x) = sin nπ

L
x

for n ≥ 1, and the corresponding solutions of the T -equation are

Tn(t) = an cos
nπ

L
ct+ bn sin

nπ

L
ct

for n ≥ 1.



Using the superposition principle, we write the solution as

u(x, t) =

∞
∑

n=1

(an cos
nπ

L
ct+ bn sin

nπ

L
ct) sin nπ

L
x,

and
∂u

∂t
(x, t) =

∞
∑

n=1

(−an
nπc

L
sin nπ

L
ct+ bn

nπc

L
cos nπ

L
ct) sin nπ

L
x.

We determine the coefficients using the initial conditions and the orthogonality of the eigenfunctions on the
interval [0, L].

From the first initial condition we have

f(x) = u(x, 0) =

∞
∑

n=1

an sin
nπ

L
x, (∗)

so that

an =
2

L

∫ L

0

f(x) sin nπ

L
x dx

for n ≥ 1.

From the second initial condition we have

0 =
∂u

∂t
(x, 0) =

∞
∑

n=1

bn
nπc

L
sin nπ

L
x,

so that bn = 0 for n ≥ 1.

The solution is

u(x, t) =

∞
∑

n=1

an cos
nπ

L
ct sin nπ

L
x =

∞
∑

n=1

an

{

1

2
sin nπ

L
(x− ct) +

1

2
sin nπ

L
(x+ ct)

}

for 0 < x < L and t > 0.

Note that if f ∈ PWS[0, L], that is, f is peicewise smooth on the interval [0, L], then (∗) is the Fourier sine
series for f, and converges for all real numbers x, and, except for at most countably many values of x, it
converges to the odd periodic extension F of f.

Therefore, assuming the odd periodic extension of F is continuous, the solution is

u(x, t) =
1

2

∞
∑

n=1

an sin
nπ

L
(x− ct) +

1

2

∞
∑

n=1

an sin
nπ

L
(x+ ct) =

1

2
F (x− ct) +

1

2
F (x+ ct)

for 0 < x < L and t > 0.



Question 2.

Small vertical vibrations u of a uniform vibrating string which is initially unperturbed are governed by the
initial value – boundary value problem

∂2u

∂t2
= c2

∂2u

∂x2

u(0, t) = 0, u(L, t) = 0 for 0 < x < L

u(x, 0) = 0,
∂u

∂t
(x, 0) = g(x) for t > 0.

Show that

u(x, t) =
1

2c

∫ x+ct

x−ct

G(s) ds,

where G(x) is the odd periodic extension of g(x).

Hint : Use separation of variables to solve the problem and then use the addition formula for the cosine
function:

sin a sin b =
1

2

[

cos(a− b)− cos(a+ b)
]

to write the solution in the form shown above.

Solution: We assume a solution of the form

u(x, t) = X(t) · T (t)

and separating variables we have two ordinary differential equations

X ′′(x) + λX(x) = 0, 0 < x < L T ′′(t) + λc2T (t) = 0, t > 0

X(0) = 0 T (0) = 0.

X(L) = 0

As before, the eigenvalues and eigenfunctions for the X-equation are

λn =
n2π2

L2
and Xn(x) = sin nπ

L
x

for n ≥ 1, and the corresponding solutions of the T -equation are

Tn(t) = an cos
nπ

L
ct+ bn sin

nπ

L
ct

for n ≥ 1.

Using the superposition principle, we write the solution as

u(x, t) =

∞
∑

n=1

(an cos
nπ

L
ct+ bn sin

nπ

L
ct) sin nπ

L
x,

and
∂u

∂t
(x, t) =

∞
∑

n=1

(−an
nπc

L
sin nπ

L
ct+ bn

nπc

L
cos nπ

L
ct) sin nπ

L
x.

We determine the coefficients using the initial conditions and the orthogonality of the eigenfunctions on the
interval [0, L].



From the first initial condition we have

0 = u(x, 0) =

∞
∑

n=1

an sin
nπ

L
x,

so that an = 0 for n ≥ 1.

From the second initial condition we have

g(x) =
∂u

∂t
(x, 0) =

∞
∑

n=1

bn
nπc

L
sin nπ

L
x, (∗∗)

so that

bn =
2

nπc

∫ L

0

g(x) sin nπ

L
x dx

for n ≥ 1, and the solution is

u(x, t) =
∞
∑

n=1

bn sin
nπ

L
ct sin nπ

L
x =

∞
∑

n=1

bn

{

1

2
cos nπ

L
(x− ct)−

1

2
cos nπ

L
(x+ ct)

}

for 0 < x < L and t > 0.

Now,

∂u

∂t
(x, t) =

1

2

∞
∑

n=1

bn
nπc

L
sin nπ

L
(x− ct) +

1

2

∞
∑

n=1

bn
nπc

L
sin nπ

L
(x+ ct)

and if g ∈ PWS[0, L], that is, g is peicewise smooth on the interval [0, L], then (∗∗) is the Fourier sine series
for g, and converges for all real numbers x, and, except for at most countably many values of x, it converges
to the odd periodic extension G of g, that is,

∂u

∂t
(x, t) =

1

2
G(x− ct) +

1

2
G(x+ ct).

Integrating this from 0 to t, we have

∫ t

0

∂u

∂t
(x, τ) dτ = u(x, t)− u(x, 0) = u(x, t)

since u(x, 0) = 0. Therefore

u(x, t) =
1

2

∫ t

0

G(x− cτ) dτ +
1

2

∫ t

0

G(x+ cτ) dτ = −
1

2c

∫ x−ct

x

G(s) ds+
1

2c

∫ x+ct

x

G(s) ds,

where we made the substitution s = x− cτ in the first integral, and s = x+ cτ in the second integral, and
assuming the odd periodic extension of g is continuous, the solution is

G(x, t) =
1

2c

∫ x+ct

x−ct

G(s) ds

for 0 < x < L and t > 0.



Question 3.

Using the one-dimensional wave equation governing the small vertical displacements of a uniform vibrating
string,

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L, t > 0

derive the conservation of energy for a vibrating string,

dE

dt
= ρc2

∂u

∂x

∂u

∂t

∣

∣

∣

∣

L

0

,

where the total enery E is the sum of the kinetic energy and the potential energy,

E(t) =
ρ

2

∫ L

0

(

∂u

∂t

)2

dx+
ρc2

2

∫ L

0

(

∂u

∂x

)2

dx.

Solution: The total energy (potential energy plus kinetic energy) of the string at time t is given by

E(t) =
1

2

∫ L

0

[

T

(

∂u

∂x

)2

+ ρ

(

∂u

∂t

)2
]

dx =
ρ

2

∫ L

0

[

c2
(

∂u

∂x

)2

+

(

∂u

∂t

)2
]

dx.

Using Leibniz’s rule, we have

E′(t) =
d

dt

(

ρ

2

∫ L

0

[

c2
(

∂u

∂x

)2

+

(

∂u

∂t

)2
]

dx

)

= ρ

∫ L

0

[

c2
∂u

∂x
·
∂2u

∂t∂x
+
∂u

∂t
·
∂2u

∂t2

]

dx

= ρ

∫ L

0

[

c2
∂u

∂x
·
∂2u

∂x∂t
+
∂u

∂t
· c2

∂2u

∂x2

]

dx

= ρc2
∫ L

0

∂

∂x

(

∂u

∂x
·
∂u

∂t

)

dx

= ρc2
∂u

∂x
·
∂u

∂t

∣

∣

∣

∣

L

0

.

Note that if the string is fixed at both ends, so that

∂u

∂t
(0, t) =

∂u

∂t
(L, t) = 0

for all t > 0, then E′(t) = 0 for all t > 0, that is, the total energy of the string is conserved.



Question 4.

Consider the non-Sturm-Liouville differential equation

d2φ

dx2
+ α(x)

dφ

dx
+
[

λβ(x) + γ(x)
]

φ = 0.

Multiply this equation by H(x). Determine H(x) such that the equation may be reduced to the standard
Sturm-Liouville form:

d

dx

[

p(x)
dφ

dx

]

+
[

λσ(x) + q(x)
]

φ = 0.

Given α(x), β(x), and γ(x), what are p(x), σ(x), and q(x) ?

Solution: Multiplying the differential equation by H(x) we have

H
d2φ

dx2
+ αH

dφ

dx
+ λβ H φ+ γ H φ = 0,

and we want to determine H so that the first two terms are an exact derivative, that is,

d

dx

[

p(x)
dφ

dx

]

= H
d2φ

dx2
+ αH

dφ

dx
,

that is,

p(x)
d2φ

dx2
+
dp(x)

dx

dφ

dx
= H

d2φ

dx2
+ αH

dφ

dx
.

Thus, we want
p(x) = H(x) and p′(x) = α(x)H

so that H(x) satisfies the differential equation

H ′(x) = α(x)H(x).

If we take
p(x) = H(x) = e

R

α(x) dx,

then the differential equation is in Sturm-Liouville form

d

dx

[

p(x)
dφ

dx

]

+
[

λσ(x) + q(x)
]

φ = 0.

where
p(x) = e

R

α(x) dx, q(x) = γ(x) e
R

α(x) dx, σ(x) = β(x) e
R

α(x) dx.

Note that p(x) > 0 and σ(x) > 0 provided that β(x) > 0.



Question 5.

Consider the partial differential equation which describes the temperature u in heat flow with convection:

∂u

∂t
= k

∂2u

∂x2
− V0

∂u

∂x
.

(a) Show that the spatial ordinary differential equation obtained by separation of variables is not in Sturm-
Liouville form, and then put it in Sturm-Liouville form.

(b) Solve the initial value – boundary value problem

u(0, t) = 0, t > 0

u(L, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < L

Solution:

(a) Assuming a solution of the form u(x, t) = φ(x) · h(t), the partial differential equation becomes

φh′ = (kφ′′ − V0φ
′)h,

and separating variables
h′

kh
=
φ′′

φ
−
V0

k

φ′

φ
= −λ

where λ is the separation constant.

Thus, we have the following two ordinary differential equations

φ′′(x)−
V0

k
φ′(x) + λφ(x) = 0, 0 < x < L

and
h′(t) + λ k h(t) = 0, t > 0.

The spatial equation is not of the form

d

dx

(

p(x)φ′(x)

)

+ [q(x) + λσ(x)]φ(x) = 0, 0 ≤ x ≤ L

where p, q, and σ satisfy the conditions for a Sturm-Liouville problem, since we would need

p(x) = 1 and p′(x) = −
V0

k
,

and that doesn’t work.

Multipying the spatial equation by e−
V0x

k , we have

d

dx

(

e−
V0x

k
dφ

dx

)

+ λe−
V0x

k φ = 0,

which is in Sturm-Liouville form.



(b) The heat equation with convection satisfies the boundary value – initial value problem:

∂u

∂t
= k

∂2u

∂x2
− V0

∂u

∂x
, 0 < x < L, t > 0

u(0, t) = 0, t > 0

u(L, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < L

Assuming a solution of the form u(x, t) = φ(x) ·h(t) and separating variables, we get the two problems:

φ′′(x)−
V0

k
φ′(x) + λφ(x) = 0, 0 < x < L h′(t) + λ k h(t) = 0, t > 0,

φ(0) = 0,

φ(L) = 0,

Making the transformation

y = e−
V0x

2k φ,

then y satisfies the boundary value problem

y′′ +

(

λ−
V 2
0

4k2

)

y = 0, 0 < x < L

y(0) = 0,

y(L) = 0,

which has nontrivial solutions if and only if

λ−
V 2
0

4k2
> 0 and λ−

V 2
0

4k2
=
n2π2

L2

for some integer n ≥ 1, and the corresponding solutions are

yn(x) = sin nπ

L
x.

Therefore for the Sturm Liouville problem, the eigenvalues are

λn =
V 2
0

4k2
+
n2π2

L2

with corresponding eigenfunctions

φn(x) = e
V0x

2k sin nπ

L
x, 0 < x < L

for n ≥ 1.

The corresponding solutions to the time equation are

hn(t) = e−λnkt

for n ≥ 1.



For each n ≥ 1, the products

un(x, t) = e
V0

2k xe−λnkt sin nπx

L

satisfy the partial differential equation as well as the boundary conditions.

Using the superposition principle, we write

u(x, t) =

∞
∑

n=1

bne
V0

2k xe−λnkt sin nπx

L
,

and we can satisfy the initial condition

f(x) = u(x, 0) =
∞
∑

n=1

bne
V0

2k x sin nπx

L

using the orthogonality of the eigenfunctions on the interval [0, L] with respect to the weight function

σ(x) = e−
V0

k
x.

We have

bn =
2

L

∫ L

0

f(x)e−
V0

2k
x sin nπx

L
dx

for n ≥ 1.

Therefore the solution to the initial value – boundary value problem is

u(x, t) =

∞
∑

n=1

bne
V0

2k xe−λnkt sin nπx

L
,

where

bn =
2

L

∫ L

0

f(x)e−
V0

2k
x sin nπx

L
dx

for n ≥ 1.

Question 6.

For the Sturm-Liouville eigenvalue problem,

d2φ

dx2
+ λφ = 0, 0 < x < L

dφ

dx
(0) = 0

φ(L) = 0,

verify the following general properties:

(a) There are an infinite number of eigenvalues with a smallest but no largest.

(b) The nth eigenfunction has n− 1 zeros.

(c) The eigenfunctions are complete and orthogonal.

(d) What does the Rayleigh quotient say concerning negative and zero eigenvalues ?



Solution:

(a) Assuming that the eigenvalues are real, we have to consider the three cases when λ = 0, λ < 0, and
λ > 0.

case 1: If λ = 0, the general solution to the differential equation φ′′(x) = 0 is φ(x) = Ax + B, with
φ′(x) = A, and applying the first boundary condition φ′(0) = 0, we have A = 0, and the solution is
φ(x) = B for 0 < x < L. Applying the second boundary condition φ(L) = 0, we have B = 0, and the
only solution in this case is the trivial solution φ(x) = 0 for 0 < x < L. Therefore λ = 0 is not an
eigenvalue.

case 2: If λ < 0, then λ = −µ2 where µ 6= 0, and the general solution to the differential equation
φ′′ − µ2φ = 0 is

φ(x) = A coshµx+B sinhµx with φ′(x) = µA sinhµx+ µB coshµx.

Applying the first boundary condition φ′(0) = µB = 0 implies that B = 0, and the solution is now

φ(x) = A coshµx

Applying the second boundary condition φ(L) = 0 implies that A coshµL = 0, so that A = 0, and in
this case we have only the trivial solution φ(x) = 0 for 0 < x < L.

case 3: If λ > 0, then λ = µ2 where µ 6= 0, and the general solution to the differential equation
φ′′ + µ2φ = 0 is

φ(x) = A cosµx+B sinµx with φ′(x) = −µA sinµx+ µB cosµx.

Applying the first boundary condition φ′(0) = 0 implies that µB = 0, so that B = 0, and the solution
is now

φ(x) = A cosµx

Applying the second boundary condition φ(L) = 0 implies that A cosµL = 0, and if A = 0 we get only
the trivial solution. The boundary value problem has a nontrivial solution if and only if cosµL = 0,
that is, if and only if µL = (n− 1

2 )π for some integer n ≥ 1, and therefore the eigenvalues are

λn =

(

(2n− 1)π

2L

)2

with corresponding eigenfunctions

φn(x) = cos (2n−1)πx
2L

for n = 1, 2, . . . .

The eigenvalues are therefore ordered as

0 < λ1 < λ2 < · · · < λn < · · · ,

and there are an infinite number of eigenvalues with the smallest one being λ1 =
π2

4L2
, but there is no

largest eigenvalue.

(b) For n ≥ 1, the eigenfunction φn is given by

φn(x) = cos (2n−1)πx
2L

for 0 < x < L. Note that

φn(0) = 1 while φn(L) = cos (2n−1)π
2 = 0,

and all the zeros of φn occur in the interval (0, L].



Also, φn(x) = 0 exactly when
(2n− 1)πx

2L
=

(2k − 1)π

2

for 1 ≤ k ≤ n, that is,

x =

(

2k − 1

2n− 1

)

L

for 1 ≤ k ≤ n, and the eigenfunction φn(x) = cos (2n−1)πx
2L has exactly n zeros in the interval (0, L],

that is, φm(x) has exactly n− 1 zeros in the interval (0, L).

(c) From Dirichlet’s theorem we know that every f in the linear space of all piecewise smooth functions on
[0, L] has a Fourier series expansion in terms of the eigenfunctions, that is, the eigenfunctions form a
complete set in the linear space PWS[0, L]. The eigenfunctions form what is usually called a Schauder

Basis for the linear space PWS[0, L]. Recall that a basis for a linear space required that each element
in the space could be written uniquely as a finite linear combination of the basis vetors.

Finally, we note that

∫ L

0

φm(x)φn(x) dx =

∫ L

0

cos (2m−1)πx
2L cos (2n−1)πx

2L dx = 0

for m,n ≥ 1 with m 6= n, and the set of eigenfunctions forms an orthogonal set.

(d) Using the boundary conditions
φ′(0) = 0 and φ(L) = 0

for the regular Sturm-Liouville problem above, we can write the eigenvalues in terms of the correspond-
ing eigenfunctions as follows

λn = R(φn) =

∫ L

0

φ′n(x)
2 dx

∫ L

0

φn(x)
2 dx

,

and clearly λn ≥ 0.

If λ0 = 0 is an eigenvalue then

λ0 = R(φ0) =

∫ L

0

φ′0(x)
2 dx

∫ L

0

φ0(x)
2 dx

= 0,

and then φ′0(x) = 0 for 0 ≤ x ≤ L, and φ0(x) is a constant, and then φ0(L) = 0 implies that φ0(x) = 0
for 0 < x < L, which is a contradiction, and therefore λ0 = 0 is not an eigenvalue.

Question 7.

Show that λ ≥ 0 for the eigenvalue problem

d2φ

dx2
+
(

λ− x2
)

φ = 0, 0 < x < 1

with
dφ

dx
(0) = 0 and

dφ

dx
(1) = 0.



Solution: This is a regular Sturm-Liouville problem with

p(x) = 1, q(x) = −x2 ≤ 0, and σ(x) = 1

for 0 ≤ x ≤ 1, and from the boundary conditions

[

− p(x)φ(x)φ′(x)
]

∣

∣

∣

∣

1

0

= 0,

and the Rayleigh quotient reduces to

λ = R(φ) =

∫ 1

0

[

φ′(x)2 + x2φ(x)2
]

dx

∫ 1

0

φ(x)2 dx

≥ 0,

and all of the eigenvalues are nonnegative.

If λ = 0 is an eigenvalue and φ0 is the corresponding eigenfunction (and is thus not identically zero on the
interval [0, 1]), then

0 = R(φ0) =

∫ 1

0

[

φ′0(x)
2 + x2φ0(x)

2
]

dx

∫ 1

0

φ0(x)
2 dx

,

assuming that φ0 and φ′0 are continuous on the interval [0, 1], this implies that

φ′0(x)
2 = 0 and x2φ0(x)

2 = 0

for all x ∈ [0, 1], and this implies that φ0(x) = 0 for all x ∈ [0, 1], which is a contradiction. Therefore λ0 = 0
is not an eigenvalue.

Question 8.

Consider the initial value – boundary value problem

cρ
∂u

∂t
=

∂

∂x

(

K0
∂u

∂x

)

+ αu, 0 < x < L, t > 0

∂u

∂x
(0, t) = 0, t > 0

∂u

∂x
(L, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < L,

where c, ρ, K0, α are functions of x.

Assume that the appropriate eigenfunctions are known. Show that the eigenvalues are positive if α < 0.
Solve the initial value – boundary value problem, briefly discussing lim

t→∞
u(x, t).

Solution:

(a) We use separation of variables. Assume a solution of the form u(x, t) = φ(x)h(t) and substitute this
into the partial differential equation to get

cρφh′ = (K0φ
′)
′
h+ αφh.



Separating variables,
(K0φ

′)
′

cρφ
+
α

cρ
=
h′

h
= −λ

where λ is the separation constant.

This leads to the two ordinary differential equations:

(K0(x)φ
′(x))

′
+ α(x)φ(x) + λc(x)ρ(x)φ(x) = 0, 0 ≤ x ≤ L; qh′(t) + λh(t) = 0, t > 0.

φ′(0) = 0,

φ′(L) = 0,

The spatial equation is a regular Sturm-Liouville problem with p(x) = K0(x), q(x) = α(x), and
σ(x) = c(x)ρ(x), all of which are assumed continuous on the closed interval [0, L]. In addition, on
physical grounds we assume that K0, c, and ρ are nonnegative and not identically zero on [0, L].

If λ is an eigenvalue with corresponding eigenvector φ(x), 0 < x < L, from the boundary conditions
we have

[

− p(x)φ(x)φ′(x)
]

∣

∣

∣

∣

L

0

= 0,

and the Rayleigh quotient reduces to

λ = R(φ) =

∫ L

0

[

K0(x)φ
′(x)2 − α(x)φ(x)2

]

dx

∫ L

0

φ(x)2ρ(x)c(x) dx

,

and if α(x) < 0 for 0 ≤ x ≤ L, then λ ≥ 0.

Note that in this case, λ = 0 is impossible, since that would imply that φ(x) = 0 for all 0 < x < L,

which is a contradiction. Therefore all the eigenvalues are strictly positive.

(b) The boundary value problem for φ is a regular Sturm-Liouville problem and has an infinite sequence of
eigenvalues and corresponding eigenfunctions {(λn, φn)}n≥1 where the φn’s form a complete orthogonal
set of functions in the linear space of piecewise continuous functions on [0, L] with respect to the weight
function σ(x) = c(x)ρ(x).

The corresponding solutions to the time equation are

hn(t) = cne
−λnt, t > 0

for n ≥ 1.

Using the superposition principle, we can write

u(x, t) =

∞
∑

n=1

cne
−λntφn(x)

for 0 < x < L, t > 0, and this satifies the partial differential equation and the boundary conditions.

In order to satisfy the initial condition, we use the orthogonality of the eigenfunctions to write

f(x) = u(x, 0) =

∞
∑

n=1

cnφn(x),

where

cn =

∫ L

0

f(x)φn(x)c(x)ρ(x) dx

∫ L

0

φn(x)
2c(x)ρ(x) dx

.



(c) Since λn > 0 for all n ≥ 0, then for each term in the series,

e−λnt −→ 0,

as t→ ∞, and therefore
lim
t→∞

u(x, t) = 0

for eaxh x ∈ (0, L).

Question 9.

Give an example of an eigenvalue problem with more than one eigenfunction corresponding to an eigenvalue.

Solution: Consider the boundary value problem with periodicity conditions as given below.

d2φ

dx2
+ λφ = 0, −π < x < π

φ(−π) = φ(π)

dφ

dx
(−π) =

dφ

dx
(π).

The eigenvalues are λn = n2 with corresponding eigenfunctions

φn(x) = cosnx and ψn(x) = sinnx

for n ≥ 0.

Therefore there are two linearly independent eigenfunctions for each eigenvalue λn for n ≥ 1. For λ0 = 0,
there is only one eigenfunction, namely, φ0(x) = 1 for −π < x < π.

Question 10

Consider a fourth-order linear differential operator,

L =
d4

dx4
.

(a) Show that uL(v)− v L(u) is an exact differential.

(b) Evaluate
∫ 1

0

[uL(v)− v L(u)] dx

in terms of the boundary data for any functions u and v.

(c) Show that
∫ 1

0

[uL(v)− v L(u)] dx = 0

if u and v are any two functions satisfying the boundary conditions

φ(0) = 0 φ(1) = 0

dφ

dx
(0) = 0

d2φ

dx2
(1) = 0.



(d) Give another example of boundary conditions such that

∫ 1

0

[uL(v)− v L(u)] dx = 0.

(e) For the eigenvalue problem [using the boundary conditions in part (c)]

d4φ

dx4
+ λexφ = 0, 0 < x < 1,

show that the eigenfunctions corresponding to different eigenvalues are orthogonal. What is the weight-
ing function ?

Solution:

(a) We consider
uv(4) = (uv′′′)′ − u′v′′′ = (uv′′′)′ − (u′v′′)′ + u′′v′′,

that is,

uv(4) = (uv′′′)′ − (u′v′′)′ + u′′v′′. (∗)

By symmetry,

vu(4) = (vu′′′)′ − (v′u′′)′ + v′′u′′, (∗∗)

and subtracting (∗∗) from (∗) we have

uL(v)− vL(u) = (uv′′′ − vu′′′ − u′v′′ + v′u′′)
′
,

and uL(v)− vL(u) is an exact differential.

(b) We have

∫ 1

0

[uL(v)− vL(u)] dx =
[

uv′′′ − vu′′′ − u′v′′ + v′u′′
]

∣

∣

∣

∣

1

0

= u(1)v′′′(1)− v(1)u′′′(1)− u′(1)v′′(1) + v′(1)u′′(1)

− u(0)v′′′(0) + v(0)u′′′(0) + u′(0)v′′(0)− v′(0)u′′(0).

(c) If u and v are any two functions satisfying the boundary conditions

φ(0) = 0, φ(1) = 0,

φ′(0) = 0, φ′′(1) = 0.

From part (b) each of the first four terms contains either u(1), v(1), u′′(1), or v′′(1), each of which is
0, while each of the last four terms contains either u(0), v(0), u′(0), or v′(0), each of which is also 0.

(d) Another set of boundary conditions for which

∫ L

0

[uL(v)− vL(u)] dx = 0

is given by

φ′(0) = 0, φ′(1) = 0,

φ′′′(0) = 0, φ′′′(1) = 0.



(e) Let (λn, φn) and (λm, φm) be distinct eigenvalue – eigenfunction pairs satisfying the boundary value
problem

d4φ

dx4
+λexφ = 0, 0 < x < 1,

φ(0) = 0, φ(1) = 0,

φ′(0) = 0, φ′′(1) = 0,

then we have

0 =

∫ 1

0

φnL(φm)− φmL(φn) dx

=

∫ 1

0

[φn (−λme
xφm)− φm (−λne

xφn)] dx

= (λn − λm)

∫ 1

0

φnφme
x dx

and if λn 6= λm, then
∫ 1

0

φnφme
x dx = 0

and φn and φm are orthogonal on the interval [0, 1] with respect to the weight function

σ(x) = ex

for x ∈ [0, 1].


