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Question 1.

Small vertical vibrations u of a uniform vibrating string which is initially at rest are governed by the initial
value — boundary value problem

Pu_ 0%
a2~ € 92
u(0,t) =0, wu(L,t)=0 for 0<ax<L

u(z,0) = f(x), %(QZ,O):O for ¢>0.

Show that
F(x —ct)+ F(z+ct)|,

Hint: Use separation of variables to solve the problem and then use the addition formula for the sine function:

N |

u(x,t) =

—

where F'(z) is the odd periodic extension of f

sinacosb = =[sin(a + b) + sin(a — b)]

DO =

to write the solution in the form shown above.

SOLUTION: We assume a solution of the form
u(z,t) = X(t) - T(t)

and separating variables we have two ordinary differential equations

X"(2) +AX(x) =0, 0<ax<L T'{t)+AX*T(t)=0, t>0
X(0)=0 T'(0) = 0.
X(L)=0

The eigenvalues and eigenfunctions for the X-equation are

n?n?

An = 7B and X (x) = sin 2z
for n > 1, and the corresponding solutions of the T-equation are
Tn(t) = a, cos “Fct + by, sin - ct

for n > 1.



Using the superposition principle, we write the solution as
o0
— E ay, cos " ct + by, sin " ct) sin G,
n=1
and
o0
= § (—an "7 sin - ct + by, “F€ cos Frct) sin BT .

We determine the coeflicients using the initial conditions and the orthogonality of the eigenfunctions on the
interval [0, L].

From the first initial condition we have

f(z) =u(x,0) = Z a, sin o, (%)

n=1
so that
2 L
ay = —/ f(z)sin T adr
L Jo

for n > 1.

From the second initial condition we have

ou >
0= E(%O) = nz::l n T7E sin B,

so that b, =0 for n > 1.

The solution is

o0 o0
1
t) = Zancos Bl ct sin B Z {sm T(r —ct) + ism e (:r+ct)}
n=1 n=1

forO<z < Landt>0.
Note that if f € PWS[0, L], that is, f is peicewise smooth on the interval [0, L], then (x) is the Fourier sine
series for f, and converges for all real numbers z, and, except for at most countably many values of z, it

converges to the odd periodic extension F' of f.

Therefore, assuming the odd periodic extension of F' is continuous, the solution is
t) t L —F t L F t
ZansmL x — ct) ZansmL (x+ct) = 5 (zfc)+§ (x+ct)

for0 <z < L and ¢t > 0.



Question 2.

Small vertical vibrations w of a uniform vibrating string which is initially unperturbed are governed by the
initial value — boundary value problem
0%u 5, 0%u
Z 2
ot? Ox?
w(0,t) =0, wu(L,t)=0 for O0<a<L

u(z,0) =0, %(m,()) =g(x) for t>0.

Show that

x+ct
u(z,t) = ! / G(s)ds,

% r—ct
where G(z) is the odd periodic extension of g(x).

Hint: Use separation of variables to solve the problem and then use the addition formula for the cosine
function:

[cos(a — b) — cos(a +b)]

N =

sinasinb =

to write the solution in the form shown above.

SOLUTION: We assume a solution of the form
u(z,t) = X(t) - T(t)

and separating variables we have two ordinary differential equations

X"x)+AX(x) =0, O0<ax<L T't)+A>T(t)=0, t>0

X(0)

I
o

7(0) = 0.

X(L)=0

As before, the eigenvalues and eigenfunctions for the X-equation are

n?n?

An = 72

and X (x) = sin Fx

for n > 1, and the corresponding solutions of the T-equation are
T,(t) = a, cos % ct + by, sin “Fct

for n > 1.

Using the superposition principle, we write the solution as

o0
u(z,t) = Z(an cos “Fct + by, sin 5 ct) sin T,

n=1

and
oo
au( t)— (_ NWC iy M op 4 | BAC Mt)' nm
7at x, = an—L Sin LC n T, COS LC Sin L.T.
n=1

We determine the coeflicients using the initial conditions and the orthogonality of the eigenfunctions on the
interval [0, L].



From the first initial condition we have

0 = u(z,0) ZansmL

so that a,, =0 for n > 1.

From the second initial condition we have

ou > o
g((E) = E(mvo) = Z nnzc Sin nfwv (**)
n=1
so that
2 L
by, = — g(z)sin 5z dx
nmc 0

for n > 1, and the solution is

[e )

oo
1
t):ansm”—L’Tctsin Z { cos a:—ct)—2cos"L”(x+ct)}
n=1

forO<z < L and ¢ >0.

Now,

Zb TC gin BT (g — ct) Zb nEC Sin M7 (7 + ct)

and if g € PW S0, L], that is, g is peicewise smooth on the interval [0, L], then (xx) is the Fourier sine series
for g, and converges for all real numbers x, and, except for at most countably many values of x, it converges
to the odd periodic extension G of g, that is,

ou

1 1
a(x,t) = §G(x— ct) + iG(a:—&—ct).

Integrating this from 0 to ¢, we have

ou
/o ot = (@, 7)dr = u(z,t) — u(z,0) = u(x,t)

since u(x,0) = 0. Therefore

1 r—ct x+ct
/Gx—CT Ydr + = /G1’+CT 5 G(s )ds—|—2—c G(s)ds,

where we made the substitution s = x — ¢7 in the first integral, and s = x 4 ¢7 in the second integral, and
assuming the odd periodic extension of g is continuous, the solution is

xr+ct
G(z,t) = 2—0/ G(s)ds

r—ct

forO<z < L and ¢ >0.



Question 3.

Using the one-dimensional wave equation governing the small vertical displacements of a uniform vibrating
string,
Pu 0%
o2 = 9x2
derive the conservation of energy for a vibrating string,

O<ax<L,t>0

AB _ souou["

dat P s ot

)
0

where the total enery E is the sum of the kinetic energy and the potential energy,
L 2 2 L 2
P ou pe ou
Et)== — ] d — — | dx.
®) 2/0 (875) SRR <8x> v

SOLUTION: The total energy (potential energy plus kinetic energy) of the string at time ¢ is given by

I ou\> ou > p [P, [ou\? ou\>
E(t)—2/0 [T(&v) +p<8t> ] dx—§/0 c (83@) +<8t> dx.
Using Leibniz’s rule, we have
: _dp/L2 du\* | (ou)®
W) =5 (2 C 9 \a:) T\a) |

— /L c2au-62u+@.@ dx
“P), |0 aor ot o

_ /L 2@ 82u+% 2@ d
“PJ, €0 oot Tt aa2]

_ CQ/La u duy .
—P ) 9r \ar ot

L

O O
ot

0
Note that if the string is fixed at both ends, so that

ou ou

for all t > 0, then E’(t) = 0 for all ¢ > 0, that is, the total energy of the string is conserved.



Question 4.

Consider the non-Sturm-Liouville differential equation

d*¢ do
@ + a(m)£ + [)\ﬂ(x) + ’Y(l’)](i) =0.
Multiply this equation by H(z). Determine H(z) such that the equation may be reduced to the standard
Sturm-Liouville form:
do

b0 %] + Do) + awlo=o.

d
drx
Given a(x), f(z), and v(x), what are p(z), o(x), and g(z)?

SOLUTION: Multiplying the differential equation by H(x) we have

d? d
e Gyl +ABHo+yHG =0,
da? dx
and we want to determine H so that the first two terms are an exact derivative, that is,

d dé A2 dé
@ Wl_gt? %
dx {p(z)daj a2 T G

that is,
@ dp(a)do _ . d*0 do

a9 1% v an?,
p(z) da? do dx dx? o dx

Thus, we want
pla)=H@) and  po) =a(@) H

so that H(x) satisfies the differential equation

H'(z) = a(x) H(z).

If we take
pla) = H(x) = e o),

then the differential equation is in Sturm-Liouville form

d¢

[0 %] + o) + atao =0,

dx dx

where
p(x) _ efa(T) dm, q(x) _ ’}/(.T) efa(r) dz’ O‘(JJ) _ ﬁ(m) efa(r) dx

Note that p(z) > 0 and o(x) > 0 provided that §(z) > 0.



Question 5.

Consider the partial differential equation which describes the temperature u in heat flow with convection:
ou 0%u ou
= —Vo—.
ot Ox? ox
(a) Show that the spatial ordinary differential equation obtained by separation of variables is not in Sturm-
Liouville form, and then put it in Sturm-Liouville form.

(b) Solve the initial value — boundary value problem

u(0,t) =0, t>0
WL, t) =0, t>0
u(z,0) = f(z), 0<ax<L

SOLUTION:

(a) Assuming a solution of the form u(x,t) = ¢(z) - h(t), the partial differential equation becomes
oh' = (k¢" — Vog')h,

and separating variables
W _¢ Vs _ _
kh ¢ E ¢

where A is the separation constant.

Thus, we have the following two ordinary differential equations

%

" (x) - ¢ (z) +Ap(x) =0, 0<z<lL

and
B'(t)+ Akh(t)=0, t>0.
The spatial equation is not of the form

d

. <p(x)¢’(a:)> +[g(z) + Ao (z)]o(z) =0, 0<z<L

where p, g, and o satisfy the conditions for a Sturm-Liouville problem, since we would need

\%
pa)=1  and  pf) =",
and that doesn’t work.
Voz

Multipying the spatial equation by 6_%, we have

d _VYoz d¢ ~ Voz

— K —)+Xe "k ¢=0

dx (e dx) A $=0

which is in Sturm-Liouville form.



(b) The heat equation with convection satisfies the boundary value — initial value problem:

ou 0%u ou
— =k——-Vp—, O L, t>0
ot~ "oaz Py DTS H U7

w(0,t) =0, t>0
w(L,t) =0, t>0
u(z,0) = f(z), 0<z<L

Assuming a solution of the form u(z,t) = ¢(x)- h(t) and separating variables, we get the two problems:

\%
¢ (x) — ?0 ¢ (@) +Ap(z) =0, 0<z<L B (t)+ Xkh(t) =0, t>0,
¢(0) =0,
¢(L) =0,
Making the transformation
Voz
Y= 6_207]6 ¢,

then y satisfies the boundary value problem

VQ
y”+< 0)yzo, 0O<z<lL

4k2
y(0) =0,
y(L) =0,
which has nontrivial solutions if and only if
‘/02 ‘/02 TL27T2
A — m >0 and A — @ = L2

for some integer n > 1, and the corresponding solutions are
Yn(x) = sin T,

Therefore for the Sturm Liouville problem, the eigenvalues are

VP
- 4k2 L2

An

with corresponding eigenfunctions

Voz
Gn(r) =e2k sin%w, 0<x<L

for n > 1.

The corresponding solutions to the time equation are
B (t) = e Aokt

for n > 1.



For each n > 1, the products

—Ankt i nwzx

Vo
un(x,t) = e2k%e sin °%

satisfy the partial differential equation as well as the boundary conditions.

Using the superposition principle, we write

[e%s} Vo
o 5L T ,—Ankt i nmax
= E bpe2k e sin “7F,
n=1
and we can satisfy the initial condition

f(z) =u(z,0) = Zb er sin "7

using the orthogonality of the eigenfunctions on the interval [0, L] with respect to the weight function

‘We have

—/ f(z Tsin “7F dx
for n > 1.

Therefore the solution to the initial value — boundary value problem is

nmwx
E bn e2k‘ e Mkt gin =,

/ f(z “sin #7F dx

where

for n > 1.

Question 6.

For the Sturm-Liouville eigenvalue problem,
2

e — t+tAp=0, 0<z<L

verify the following general properties:

a) There are an infinite number of eigenvalues with a smallest but no largest.

(
(

)

b) The n'® eigenfunction has n — 1 zeros.

(¢) The eigenfunctions are complete and orthogonal.
)

(d) What does the Rayleigh quotient say concerning negative and zero eigenvalues ?



SOLUTION:

(a)

Assuming that the eigenvalues are real, we have to consider the three cases when A = 0, A < 0, and
A > 0.

case 1: If A = 0, the general solution to the differential equation ¢”(z) = 0 is ¢(z) = Az + B, with
¢'(x) = A, and applying the first boundary condition ¢'(0) = 0, we have A = 0, and the solution is
¢(x) = B for 0 < z < L. Applying the second boundary condition ¢(L) = 0, we have B = 0, and the
only solution in this case is the trivial solution ¢(z) = 0 for 0 < & < L. Therefore A = 0 is not an
eigenvalue.

case 2: If A < 0, then A\ = —u? where ;v # 0, and the general solution to the differential equation

"o 20 .
" —prp=01s

¢(x) = Acosh px + Bsinh px with ¢'(r) = pAsinh px + pB cosh p.
Applying the first boundary condition ¢'(0) = uB = 0 implies that B = 0, and the solution is now
¢(x) = Acosh px
Applying the second boundary condition ¢(L) = 0 implies that A cosh uL = 0, so that A = 0, and in
this case we have only the trivial solution ¢(z) =0 for 0 < 2 < L.
case 3: If A > 0, then A\ = p? where u # 0, and the general solution to the differential equation
¢l/ + u2¢ =0is
¢(x) = Acos px + Bsin px with ¢ (1) = —pAsin px + pB cos pz.

Applying the first boundary condition ¢’(0) = 0 implies that B = 0, so that B = 0, and the solution
is now

o(x) = Acos ux

Applying the second boundary condition ¢(L) = 0 implies that A cos uL = 0, and if A =0 we get only
the trivial solution. The boundary value problem has a nontrivial solution if and only if cos uL = 0,
that is, if and only if uL = (n — ) for some integer n > 1, and therefore the eigenvalues are

- ((2n2—Ll)7r)2

2n—1)mx
odn(x) = cos %

with corresponding eigenfunctions

form=1,2,....
The eigenvalues are therefore ordered as
D<A <A< <A< oee gy
2
412’

and there are an infinite number of eigenvalues with the smallest one being A\ = but there is no

largest eigenvalue.

For n > 1, the eigenfunction ¢, is given by

for 0 < z < L. Note that
: 2n—1)m
$n(0)=1  while ¢, (L) = cos ZZUT —,

and all the zeros of ¢,, occur in the interval (0, L].



Also, ¢, () = 0 exactly when
(2n—lrx  (2k—1)7
2L 2

2k —1
= L
2n —1
for 1 < k < n, and the eigenfunction ¢, (z) = cos W has exactly n zeros in the interval (0, L],
that is, ¢, (z) has exactly n — 1 zeros in the interval (0, L).

for 1 < k < n, that is,

From Dirichlet’s theorem we know that every f in the linear space of all piecewise smooth functions on
[0, L] has a Fourier series expansion in terms of the eigenfunctions, that is, the eigenfunctions form a
complete set in the linear space PWS|0, L]. The eigenfunctions form what is usually called a Schauder
Basis for the linear space PWS|[0, L]. Recall that a basis for a linear space required that each element
in the space could be written uniquely as a finite linear combination of the basis vetors.

Finally, we note that

L L
Gm(T)pn () dr = / cos (2m;L1)Tr cos (2”25)” der =0
0

for m,n > 1 with m # n, and the set of eigenfunctions forms an orthogonal set.

Using the boundary conditions
¢'(0)=0 and o(L)=0

for the regular Sturm-Liouville problem above, we can write the eigenvalues in terms of the correspond-
ing eigenfunctions as follows

and clearly A\, > 0.

If Ay = 0 is an eigenvalue then

/¢o
" o

and then ¢} (x) =0 for 0 < a < L, and ¢g(x) is a constant, and then ¢g(L) = 0 implies that ¢g(z) =0
for 0 < = < L, which is a contradiction, and therefore A\g = 0 is not an eigenvalue.

Question 7.

Show that A > 0 for the eigenvalue problem

with

2
jf+(/\ ?)p=0, 0<z<l1
d do

dx( )=20 and %(l) =0.



SOLUTION: This is a regular Sturm-Liouville problem with
p(x) =1, q(z) = —2% <0, and olz)=1

for 0 <z <1, and from the boundary conditions

and the Rayleigh quotient reduces to

/ [¢/(2)* + 2°¢(2)?] da
A= R(¢) = = =0,

/ o

If A =0 is an eigenvalue and ¢q is the corresponding eigenfunction (and is thus not identically zero on the
interval [0,1]), then

and all of the eigenvalues are nonnegative.

1
/0 [60(2)? + 2260 (2)?] do

/01 ¢o(x)? da

assuming that ¢¢ and ¢f are continuous on the interval [0, 1], this implies that

0= R(¢o) =

)

H@P=0 and  Peo(e)? =0
for all z € [0, 1], and this implies that ¢o(z) = 0 for all = € [0, 1], which is a contradiction. Therefore Ay = 0
is not an eigenvalue.
Question 8.

Consider the initial value — boundary value problem

ou 0 ou
Cp(‘)t_(’)x<K08x)+au’ O<z<L, t>0
ou
204 = t
aa:(o,) 0, t>0
ou
a—x(L,t)_O, t>0

u(z,0) = f(z), 0<x<L,
where ¢, p, Ky, o are functions of x.

Assume that the appropriate eigenfunctions are known. Show that the eigenvalues are positive if a < 0.
Solve the initial value — boundary value problem, briefly discussing 26lim u(zx,t).
—00

SOLUTION:

(a) We use separation of variables. Assume a solution of the form wu(x,t) = ¢(x)h(t) and substitute this
into the partial differential equation to get

cpoh’ = (Kod')' h + agh.



Separating variables,
Ko¢') R’
(Koo') LMy
cpo cp h
where )\ is the separation constant.

This leads to the two ordinary differential equations:

(Ko(2)¢'(2)) + a(2)d(x) + Ae(@)p(z)p(x) =0, 0<z < L; gh'(t)+An(t)=0, t>0.

The spatial equation is a regular Sturm-Liouville problem with p(z) = Ky(x), ¢(z) = a(z), and
o(x) = c(z)p(x), all of which are assumed continuous on the closed interval [0, L]. In addition, on
physical grounds we assume that Ky, ¢, and p are nonnegative and not identically zero on [0, L].

If )\ is an eigenvalue with corresponding eigenvector ¢(x), 0 < x < L, from the boundary conditions
we have

and the Rayleigh quotient reduces to

L
/ [Ko(2)@ (2)? — a(2)¢(x)?] do
A= R(d)) =20 T ,
/O b(z)2p(w)el) da

and if a(z) < 0 for 0 <z < L, then X\ > 0.
Note that in this case, A = 0 is impossible, since that would imply that ¢(z) = 0 for all 0 < z < L,
which is a contradiction. Therefore all the eigenvalues are strictly positive.

The boundary value problem for ¢ is a regular Sturm-Liouville problem and has an infinite sequence of
eigenvalues and corresponding eigenfunctions {(\,, ¢,,) }>1 where the ¢,,’s form a complete orthogonal
set of functions in the linear space of piecewise continuous functions on [0, L] with respect to the weight
function o(x) = ¢(x)p(x).

The corresponding solutions to the time equation are
ho(t) = cpe™ ™t >0
for n > 1.

Using the superposition principle, we can write

o0

u(z,t) = Z cne_/\"t¢n(x)

n=1

for 0 < x < L, t > 0, and this satifies the partial differential equation and the boundary conditions.

In order to satisfy the initial condition, we use the orthogonality of the eigenfunctions to write

f(x) = u(x, 0) = Z cn¢n(x)a
where
L
; f(@)n(@)c(z)p(z) dz
Cp = T
dn (@) c(x)p(x) dx



(c) Since A, > 0 for all n > 0, then for each term in the series,
e Mt 50,
as t — oo, and therefore

lim u(z,t) =0

t—o00

for eaxh x € (0, L).

Question 9.
Give an example of an eigenvalue problem with more than one eigenfunction corresponding to an eigenvalue.

SoLUTION: Consider the boundary value problem with periodicity conditions as given below.

%—&-)@:0, —T<x<T
P(—m) = o(m)
¢ 9

7 ) = 5 (7).

The eigenvalues are \,, = n? with corresponding eigenfunctions
¢n(x) = cosnx and Yn(x) = sinnz
for n > 0.

Therefore there are two linearly independent eigenfunctions for each eigenvalue A, for n > 1. For Ay = 0,
there is only one eigenfunction, namely, ¢g(z) =1 for —7 < 2 < 7.

Question 10

Consider a fourth-order linear differential operator,
d
=
(a) Show that u L(v) — v L(u) is an exact differential.
(b) Evaluate
/01 [uL(v) — v L(u)] dx
in terms of the boundary data for any functions u and v.
(¢) Show that
/01 [ L(v) — v L(w)] dz = 0
if u and v are any two functions satisfying the boundary conditions
$(0)=0  ¢(1)=0

d¢ 2
=0 “Z1)=0.



(d) Give another example of boundary conditions such that
1
/ [uL(v) — v L(u)] dz = 0.
0

(e) For the eigenvalue problem [using the boundary conditions in part (c)]

&g

dm4+/\e“"¢:0, 0<x<l,

show that the eigenfunctions corresponding to different eigenvalues are orthogonal. What is the weight-
ing function ?

SOLUTION:

(a) We consider
"1

w® = (") — V" = (W) — (W'") +u"v",

that is,

ww™® = (u"”) — (W) + u"v". (%)
By symmetry,

vu® = (") — W) + 0", ()
and subtracting (xx) from (*) we have

uL(v) —vL(u) = (u"” —ou”" —u'v" +v'u"),

and uL(v) — vL(u) is an exact differential.

(b) We have

1 1
/ [uL(v) — vL(u)] dz = [w" —vu" —u'v" + v'u"|
0 0

= ()" (1) —o()u" (1) — o' ()" (1) + ' (1)u”" (1)

—u(0)v"(0) + v(0)u""(0) + u'(0)v”(0) — v’ (0)u" (0).

(¢) If u and v are any two functions satisfying the boundary conditions

From part (b) each of the first four terms contains either u(1), v(1), v”(1), or v”(1), each of which is
0, while each of the last four terms contains either «(0), v(0), u'(0), or v'(0), each of which is also 0.

(d) Another set of boundary conditions for which

L
/0 WL (v) — vL(w)] dz = 0
is given by
¢'(0) =0, ¢'(1) =0,
S0 =0, )=



(e) Let (An, dn) and (A, @) be distinct eigenvalue — eigenfunction pairs satisfying the boundary value
problem

d4
7¢+/\6“’¢> =0, 0<z<l,
dx?

then we have

1
0= /0 SnL(bm) — dumL(dy) dz

1
— [ 100 (Ane60) = b (“ne*n)] d
0
1
=\, — )\m)/ Ondme” dx
0
and if \,, # A\, then
1
/ Gndme® dr =0
0
and ¢, and ¢, are orthogonal on the interval [0, 1] with respect to the weight function
o(x)=e"

for x € [0, 1].



