Solutions to Problem Set1l
Math 300 - Spring-Summer 2018
Completion Date: May 21

These problems are a review of the techniques used last year in Math 201.
Question 1.

Find the general solution to the differential equation

(€®0) 4+ X2e"p = 0.

SoLUTION: We have
(ezw/)/ + )\26‘70@ =0

if and only if
69690” +ex(p/ +/\26x@ — 0’
and since e® # 0 for any real number z, then ¢ is a solution to the original equation if and only if
¢+ + X =0,

and this constant coefficient equation has characteristic equation m? + m + A? = 0 with roots

1 1 1 1
my = ——+ =1 —4\2, and ma 5 2\/1—4)\2.

2 2

Now, considering all possible cases:

1 1
Case 1: if 1 —4X? > 0, that is, —5 <AL 5 the general solution is

1 1
o(x) = e %/2 {cl cosh (2 V1—4)2 x) -+ ¢g sinh (2 V1—4)\2 m)} ,

1
Case 2: if 1 —4\? = 0, that is, A = ii’ the general solution is

p(a) = e Pler + eaal,

1 1
Case 3: if 1 —4)2 < 0, that is, A > 3 or A < 5 the general solution is

1 1
o) = e72/2 {cl cos <2\/mx) + cosin (2 VAN2 — 1x>} ,

where ¢, and ¢y are arbitrary constants.



Question 2.

Compare and contrast the form of the solutions of these three differential equations and their behavior as
t — oo.

d?u d*u d*u

SOLUTION:

2

(a) The general solution to the equation dTg +u = 01is u(t) = cycost + cysint, and tlim u(t) = 0 if
—00

c1 = ¢ = 0 and does not exist otherwise.
2

d
(b) The general solution to the equation dTg =01is u(t) = ¢1t + co, and

400 if ¢; >0
tllglo u(t) = Co if =0

—00 if ¢ <O.

d2
(¢) The general solution to the equation SV u=0is u(t) = cre! + coe™t, and

dt?
400 if ¢4>0
tllglo u(t) = 0 if ¢4 =0

—00 if ¢ <O0.

Question 3.

Find the general solution to the following differential equation (X is a constant). Use an “exponential” trial
solution. »
u
— = Xu=0.
da?

SoLUTION: We assume a solution of the form u(z) = ¢™*, then m* — A* = 0 so that m = £\, £i)\, and the
general solution is
u(zx) = 1™ + coe ™M 4 5 coS AT + ¢4 sin Az

Question 4.

One solution of the differential equation

i xd—u —|—4x2_1u—0
dx dx 4x B

is given by

Find a second independent solution.



SOLUTION: The differential equation can be written in the form

LPu 2t
dx?  dx 4x

u=20
and in standard form

d?u 1 du 42 -1

R Sk )
dz?  z dx 42 Y

If ug(z) = v(x) uy(x), then the equation satisfied by v(z) is

1
uv” + 20'u) + = v'u; =0
x

and since
cosx
uy = )
VT
, sinz  cosx
W= P
! Voo 2x3/2’
then )
cosx sinx
V! — v = 0,
NG NG

that is,

v’ 2sinz

— = ’

v cos x
so that

log |[v'| = —21log | cos z|,
that is,
/ 2
v’ =sec®x and v(x) = tan x.

Therefore

us(z) = v(x)uy(x) = tanx S

Ve oo Voo

Question 5.

Given the differential equation

use the change of variable

to solve the equation.

SoruTION: Differentiating p(p), we have




From the differential equation, we have

/ v 4X2p% —1 v
Vpv' 4+ 15572 + 1 7 =

which implies that
V' 4+ Xv =0,

with the general solution v(z) = ¢ cos Ap + ¢o sin A\p and therefore

cos \ sin A
P i P

NN

wlp)=c

Question 6.

The displacement wu(t) of a mass in mass-spring-damper system, as in the figure below,

is described by the initial value problem

d*u du 9
7z a +wu=0
u(0) = ug
du
E(O) = o

The coefficients b and w? are proportional to the characteristic constants of the damper and the spring,
g
respectively.)

Solve the initial value problem for each of the parameter ranges below, and explain why these ranges might
have been chosen.

() b=0, (O0<b<2w, ()b=2w,  (d)b>2w.

SOLUTION: Assuming a solution to the differential equation

d*u du
— +b— +wu=0
dt2+ dt+wu

of the form wu(t) = e™!, the characteristic equation is m? + bm + w? = 0 with roots

b 1

m=—— 4 —b% — dw?.
2 2



(a) If b= 0, then my = iw and mo = —iw, and the general solution is
u(t) = ¢1 coswt + co sinwt.
Applying the initial conditions
u(0) =wup implies ¢; =ug and v (0) =wvg implies ¢z = %,

so that the solution to the initial value problem is

v
u(t) = ug coswt + =2 sinwt.
w

b 1 b i
(b) If 0 < b < 2w, then my = 5 + % V4w? — b2, and my = 5 %\/ 4w? — b2, and the general solution is

b
u(t) = e~ 2"(cy cos Bt + cy sin ft)

where = y/w? — b2 /4. Applying the initial conditions

2 b
u(0) = up implies ¢ = ug and u'(0) = vy implies ¢y = %
so that the solution to the initial value problem is
b 2 b
u(t) = e 2" (uo cos Ot + % sin ,Bt) .
b A
(¢) If b = 2w, then my = mgy = —3 and the general solution is
_b,
u(t) = (c1 + cat)e™ 2.
Applying the initial conditions
u(0) = ug implies ¢ = ug and u'(0) =wvg implies ca = vy + Ugw

so that the solution to the initial value problem is

b
u(t) = (ug + (vo + uow)t) e~ 2"
b b
(d) If b > 2w, then my = —3 + 3, and mg = 5~ B, where 8 = 1/b%?/4 — w, and the general solution is

b
u(t) = (cleﬁt + CQe_ﬁt)e_§t.

Applying the initial conditions

1 1
w(0) =up implies ¢ = ﬁ(vo — maug) and v (0) = vy implies ¢y = %(mluo — vp)
so that the solution to the initial value problem is
1 mat mot
u(t) = 23 [(Uo — maug)e™" + (myug — vp)e"? ] .

It is clear from the above that these ranges of b were chosen because of the drastic change in behavior of the
solutions in going from one interval to another.



Question 7.

Find the general solution to the differential equation

d*u 5

a2 7 (u—U)=0

where U and 2 are constant.

SOLUTION: If we make the substitution v = u — U, then
d?v
proR

and the general solution to this equation is The general solution is

v(x) = 1" + coe 77,

Therefore, the general solution to the original differential equation is

u(z) =U + 17 + coe” 77,

Question 8.

Find the general solution of the differential equation

1d ( du)
r dr dr)

SoLUTION: Multiplying the differential equation by r, we have

d( du) _
ar\"ar )0

and integrating,
du r n
ke S
dr 2 b
so that
du r oo
— = —— 4 —.
dr 2 r
Integrating again, we have
2
r
—— +c1logr + cs.

u(r) = 1



Question 9.

The displacement u(t) of a mass in mass-spring-damper system with an external force, as in the figure below,

F(t)#

is described by the initial value problem

d*u du 9
ﬁ+ba+w u = focos ut
u(0) =0

du
0=

(The coefficients b and w? are proportional to the characteristic constants of the damper and the spring,
respectively, and the coefficient fj is proportional to the amplitude of the external force.)

Solve the initial value problem for these three cases;

(a) b=0, p#w, (b)b=0, p=uw, (c) b>0.
SOLUTION:

(a) If b= 10, and p # w, the general solution to the homogeneous equation is given by
ue(t) = ¢1 coswt + co sinwt

where ¢; and ¢y are arbitrary constants, and a particular solution to the nonhomogeneous equation is
given by
Jo

U/p(t) = m COS ,ut

The general solution to the nonhomogeneous equation is

Jo

u(t) = ¢1 coswt + ¢ sinwt + —— Cos ut,
W=

and applying the initial conditions

Jo

e and  u/(0) =0 implies ¢ =0,

w(0) =0 implies ¢ = —

and the solution to the initial value problem is

Jo
u(t) = m(cos ut — coswt).



(b) If b =0 and p = w, the general solution to the homogeneous equation is given by
ue(t) = ¢1 coswt + o sin wt

where ¢; and ¢y are arbitrary constants, and a particular solution to the nonhomogeneous equation is
given by
Jot .
up(t) = =— sinwt.
(1) = 22

The general solution to the nonhomogeneous equation is

t
u(t) = ¢y coswt + <02 + J;) sin wt,
w

and applying the initial conditions
w(0) =0 implies ¢; =0 and  «/(0) =0 implies ¢y =0,
and the solution to the initial value problem is
t
u(t) = JQ% sin wt.
(¢) If b > 0, the general solution to the homogeneous equation is
b
uc(t) = (c1 cos Bt + cosin ft)e” 2",  where [ = /w2 —0b2/4, if 0<b< 2w,
b
ue(t) = (c1 + cot)e™ 2%, if b= 2w,
b
uc(t) = (c1e’' + 27 Pe 2", where [ =/b2/4—w?, if b>2w

where ¢; and ¢y are arbitrary constants, and a particular solution to the nonhomogeneous equation is

Ji .
up(t) = o M2)02 T [(w? — p?) cos put + pbsin pt].

_<502 — C;b> cos Bt — (501 + C;b) sinﬁt} efgt

Now,

’ b —Qt
u,(t) =14 |ea — 5(61 +eot)| e 2

:(ﬁ - 2) creft — (ﬁ + Z) 026_/%] 67%t

in each of the respective cases above. Therefore,

C1
u:(0) =< ¢;
c1+ c2
and b
c
Bez — -
b
u(0) = { e = %t
b b
(1=3)a-(+3)-
and ol ) 2) Fori2h
olw™ — oM
up(o) - (wz o ,LL2)2 Jr‘uzbz and u;(O) = (w2 _ ‘u2)2 +H2b2'



Since u(t) = u.(t) + up(t), applying the initial conditions, we have

uw(0) =0 implies u.(0) = —u,(0) and  «/(0) =0 implies u(0) = —u,(0),

and

with ¢; and ¢s as determined above.

Question 10.

Use variation of parameters to find a particular solution of the differential equation

d?y

2 +y =sinz,

if two independent solutions to the homogeneous equation are given by y;(z) = cosz, and ys(z) = sinx. Be
sure that the differential equation is in the correct form.

SoLUTION: The Wronskian is

cosr sinz

. cos’z +sinz = 1.
—sinx  cosx

W(x) =

Writing
y(z) = vi(x)y1(2) + v (2)y2(2),

and forcing y(x) to be a solution to the original differential equations gives

vl(x):-/wd:cz—/sin%dxz—;/(1—cos2x)dx

and ) .
v1(z) = —5% + 1 sin 2z.
Also .
vo(x) = / de = /cosxsinmdac = §sin2 x,
and )
vo(x) = 3 sin? z.
Therefore ) ) )
yp(x) = v1(2)y1(z) + va(x)y2(z) = —gTcosT + i sin 2x cos x + B sin® 2,
that is,

1 1. . 1 1.
yp(x):fixcos:chi(smxcos x + sin ):fixcos:ﬂ+§smx

and we may take

1
yp(x) = —5%cos .



Question 11.

Use variation of parameters to show that a particular solution of the differential equation

d?u

ﬁ—’fu:f(t)

is given by

up(t) = %A sinh~y(t — 2) f(z) dz.

SOLUTION: Two independent solutions of the homogeneous equation are given by
uy(t) = et and ug(t) = e 7,

and the Wronskian is

We look for a particular solution of the form
up(t) = vi(t)ur(t) + va(t)ua(t),
and forcing this to be a solution to the original differential equation gives

vl(t):—% and Mt):%,

and integrating, we get
t ¢
vy (t) = 7/0 M dz and va(t) = /0 ul(z)f§z) dz.

Therefore the particular solution can be written as

up(t) = —Ul(f)/o Wdz+u2(t)/o ul(z)f)(z)dz’

and so

1 ¢ ¢ 1t
up(t) = ~3 [—e”t/ e Fdz+ e_vt/ ev* dz} = f/ sinh~(t — z) dz.
g 0 0 7 Jo

Question 12.

Many differential equations are really Bessel’s equation in disguised form. Consider the following equation:

2
s d*u

du 272 2b 2 272
x@+(2c+l)x%+[abw + (¢ = pb)]u=0 (%)

where a, b, ¢, p are constants. (p is not an integer).

(a) Show that the change of variables defined by
s = ax®, and w(s) = xu(x)
transforms equation (x) into Bessel’s equation for w(s).

(b) Write the general solution of the equation (*) in terms of Bessel functions.



SOLUTION: Let s = ax’, and w(s) = z°u(x), then
1
T = <§> b and u(x) = w(s)c .
' (o)’
a
b—1
L 41

Now,
ds
de
Define
c 1 1
A=uab, )\:E’ B=abb,
then p
i = Bs'™ u(z) = As~w(s),
and du  d d
U —cA S —(14c)A —(14+c)A
£:£(As w(s))%:AB[l(Jr)w'fc)\s(Jr)w]
and
du_d 1-(14e)A —(1+e)A ds
E:£{AB[S A+ — exs™(1Fe) w]}%
= AB*{s*7 TNy 1 [1 — (14 20)A|s' 7T 4 ¢(1 + ) A2s~ 3Ty}
and
2 d*u CAp2 —CcA[ 2, 1 ! 2
T = e [s*w"” + [1 = (14 2c)AJsw’ + ¢(1 4 )\ w]
du CAp o —CA /
(2¢ + 1)35% = (14 2¢)a“bs™(sw' — cAw)

(check these!)

From (%) we have
a s~ M 2w + [1 — (1 + 2c)\sw’ + ¢(1 + ¢)\*w}
+ abs ™M1+ 2¢)(sw’ — edw) + [a?b?a=25% + ¢ — b as™Pw = 0

(1 +2c)} sw'’
R

1
+ [c(c+1)/\2 — 5(14—26)6)\—1—82 + Z—z —u?

1
2w + [1 — (14 2e)A + i

ac)\bQS—c)\{S

Therefore
s2w” + sw' + (s> — pH)w =0

which is Bessel’s equation, and the solution is
w(s) = c1J,(s) + caJ_,(s)

u(r) = 27 w(s) = 2 w(az’) = 271 T, (ax®) + caJ_,(az?)].

and



Question 13.

Use the result of the previous problem to obtain the general solution of Airy’s equation

u’ + xu = 0.

SOLUTION: Solve u” 4+ zu = 0 by choosing a, b, ¢, p so that () looks like u” + zu = 0.

Since ) L d
u U _ _
E+(2c+1);%+[a2b2x2(b D4 (¢ — 120 “lu=0,
we need
2c+1=0
2b-1)=1
a?b? =
c27u2b2: :
that is,
I SRS T B |
c= 2a _27 a_37 /j/—3

The solution to Airy’s equation u” + zu = 0 is

3 3
u(z) = 21/2 |:01J1 <§x2> +cd 1 (ng)] .
3 _

W



