
 

Solutions to Problem Set1

Math 300 - Spring-Summer 2018

Completion Date: May 21

These problems are a review of the techniques used last year in Math 201.

Question 1.

Find the general solution to the differential equation

(exϕ′)
′

+ λ2exϕ = 0.

Solution: We have
(exϕ′)′ + λ2exϕ = 0

if and only if
exϕ′′ + exϕ′ + λ2exϕ = 0,

and since ex 6= 0 for any real number x, then ϕ is a solution to the original equation if and only if

ϕ′′ + ϕ′ + λ2ϕ = 0,

and this constant coefficient equation has characteristic equation m2 +m+ λ2 = 0 with roots

m1 = −1

2
+

1

2

√

1− 4λ2, and m2 = −1

2
− 1

2

√

1− 4λ2.

Now, considering all possible cases:

Case 1: if 1− 4λ2 > 0, that is, −1

2
< λ <

1

2
the general solution is

ϕ(x) = e−x/2

[

c1 cosh

(

1

2

√

1− 4λ2 x

)

+ c2 sinh

(

1

2

√

1− 4λ2 x

)]

,

Case 2: if 1− 4λ2 = 0, that is, λ = ±1

2
, the general solution is

ϕ(x) = e−x/2[c1 + c2x],

Case 3: if 1− 4λ2 < 0, that is, λ >
1

2
or λ < −1

2
, the general solution is

ϕ(x) = e−x/2

[

c1 cos

(

1

2

√

4λ2 − 1x

)

+ c2 sin

(

1

2

√

4λ2 − 1x

)]

,

where c1 and c2 are arbitrary constants.



Question 2.

Compare and contrast the form of the solutions of these three differential equations and their behavior as
t → ∞.

(a)
d2u

dt2
+ u = 0 (b)

d2u

dt2
= 0 (c)

d2u

dt2
− u = 0.

Solution:

(a) The general solution to the equation
d2u

dt2
+ u = 0 is u(t) = c1 cos t + c2 sin t, and lim

t→∞

u(t) = 0 if

c1 = c2 = 0 and does not exist otherwise.

(b) The general solution to the equation
d2u

dt2
= 0 is u(t) = c1t+ c2, and

lim
t→∞

u(t) =



















+∞ if c1 > 0

c2 if c1 = 0

−∞ if c1 < 0.

(c) The general solution to the equation
d2u

dt2
− u = 0 is u(t) = c1e

t + c2e
−t, and

lim
t→∞

u(t) =



















+∞ if c1 > 0

0 if c1 = 0

−∞ if c1 < 0.

Question 3.

Find the general solution to the following differential equation (λ is a constant). Use an “exponential” trial
solution.

d4u

dx4
− λ4u = 0.

Solution: We assume a solution of the form u(x) = emx, then m4 − λ4 = 0 so that m = ±λ, ±iλ, and the
general solution is

u(x) = c1e
λx + c2e

−λx + c3 cosλx+ c4 sinλx.

Question 4.

One solution of the differential equation

d

dx

(

x
du

dx

)

+
4x2 − 1

4x
u = 0

is given by

u1(x) =
cosx√

x
.

Find a second independent solution.



Solution: The differential equation can be written in the form

x
d2u

dx2
+

du

dx
+

4x2 − 1

4x
u = 0

and in standard form
d2u

dx2
+

1

x

du

dx
+

4x2 − 1

4x2
u = 0.

If u2(x) = v(x)u1(x), then the equation satisfied by v(x) is

u1v
′′ + 2v′u′

1 +
1

x
v′u1 = 0

and since

u1 =
cosx√

x
,

u′

1 = − sinx√
x

− cosx

2x3/2
,

then
cosx√

x
v′′ − 2

sinx√
x

v′ = 0,

that is,
v′′

v′
=

2 sinx

cosx
,

so that
log |v′| = −2 log | cosx|,

that is,
v′ = sec2 x and v(x) = tanx.

Therefore

u2(x) = v(x)u1(x) = tanx
cosx√

x
=

sinx√
x
.

Question 5.

Given the differential equation
d

dρ

(

ρ
dϕ

dρ

)

+
4λ2ρ2 − 1

4ρ
ϕ = 0,

use the change of variable

ϕ(ρ) =
v(ρ)√

ρ

to solve the equation.

Solution: Differentiating ϕ(ρ), we have

dϕ

dρ
=

v′(ρ)√
ρ

− v(p)

2ρ3/2

ρ
dϕ

dρ
=

√
ρ v′(ρ)− v(ρ)

2
√
ρ

d

dρ

(

ρ
ϕ

dρ

)

=
√
ρ v′′(ρ) +

1

4

v(ρ)

ρ3/2
.



From the differential equation, we have

√
ρv′′ +

v

4ρ3/2
+

4λ2ρ2 − 1

4ρ

v√
ρ
= 0

which implies that
v′′ + λ2 v = 0,

with the general solution v(x) = c1 cosλρ+ c2 sinλρ and therefore

ϕ(ρ) = c1
cosλρ√

ρ
+ c2

sinλρ√
ρ

.

Question 6.

The displacement u(t) of a mass in mass-spring-damper system, as in the figure below,

u

is described by the initial value problem

d2u

dt2
+ b

du

dt
+ ω2u = 0

u(0) = u0

du

dt
(0) = v0.

(The coefficients b and ω2 are proportional to the characteristic constants of the damper and the spring,
respectively.)

Solve the initial value problem for each of the parameter ranges below, and explain why these ranges might
have been chosen.

(a) b = 0, (b) 0 < b < 2ω, (c) b = 2ω, (d) b > 2ω.

Solution: Assuming a solution to the differential equation

d2u

dt2
+ b

du

dt
+ ω2u = 0

of the form u(t) = emt, the characteristic equation is m2 + bm+ ω2 = 0 with roots

m = − b

2
± 1

2

√

b2 − 4ω2.



(a) If b = 0, then m1 = iω and m2 = −iω, and the general solution is

u(t) = c1 cosωt+ c2 sinωt.

Applying the initial conditions

u(0) = u0 implies c1 = u0 and u′(0) = v0 implies c2 =
v0
ω
,

so that the solution to the initial value problem is

u(t) = u0 cosωt+
v0
ω

sinωt.

(b) If 0 < b < 2ω, then m1 = − b

2
+

i

2

√
4ω2 − b2, and m2 = − b

2
− i

2

√
4ω2 − b2, and the general solution is

u(t) = e−
b
2 t(c1 cosβt+ c2 sinβt)

where β =
√

ω2 − b2/4. Applying the initial conditions

u(0) = u0 implies c1 = u0 and u′(0) = v0 implies c2 =
2v0 + bu0

2β

so that the solution to the initial value problem is

u(t) = e−
b
2 t

(

u0 cosβt+
2v0 + bu0

2β
sinβt

)

.

(c) If b = 2ω, then m1 = m2 = − b

2
, and the general solution is

u(t) = (c1 + c2t)e
−

b
2 t.

Applying the initial conditions

u(0) = u0 implies c1 = u0 and u′(0) = v0 implies c2 = v0 + u0ω

so that the solution to the initial value problem is

u(t) = (u0 + (v0 + u0ω)t) e
−

b
2 t.

(d) If b > 2ω, then m1 = − b

2
+ β, and m2 = − b

2
− β, where β =

√

b2/4− ω, and the general solution is

u(t) =
(

c1e
βt + c2e

−βt
)

e−
b
2 t.

Applying the initial conditions

u(0) = u0 implies c1 =
1

2β
(v0 −m2u0) and u′(0) = v0 implies c2 =

1

2β
(m1u0 − v0)

so that the solution to the initial value problem is

u(t) =
1

2β

[

(v0 −m2u0)e
m1t + (m1u0 − v0)e

m2t
]

.

It is clear from the above that these ranges of b were chosen because of the drastic change in behavior of the
solutions in going from one interval to another.



Question 7.

Find the general solution to the differential equation

d2u

dx2
− γ2(u− U) = 0

where U and γ2 are constant.

Solution: If we make the substitution v = u− U, then

d2v

dx2
− γ2v = 0,

and the general solution to this equation is The general solution is

v(x) = c1e
γx + c2e

−γx.

Therefore, the general solution to the original differential equation is

u(x) = U + c1e
γx + c2e

−γx.

Question 8.

Find the general solution of the differential equation

1

r

d

dr

(

r
du

dr

)

= −1.

Solution: Multiplying the differential equation by r, we have

d

dr

(

r
du

dr

)

= −r,

and integrating,

r
du

dr
= −r2

2
+ c1,

so that
du

dr
= −r

2
+

c1
r
.

Integrating again, we have

u(r) = −r2

4
+ c1 log r + c2.



Question 9.

The displacement u(t) of a mass in mass-spring-damper system with an external force, as in the figure below,

u

t )( F

is described by the initial value problem

d2u

dt2
+ b

du

dt
+ ω2u = f0 cosµt

u(0) = 0

du

dt
(0) = 0.

(The coefficients b and ω2 are proportional to the characteristic constants of the damper and the spring,
respectively, and the coefficient f0 is proportional to the amplitude of the external force.)

Solve the initial value problem for these three cases;

(a) b = 0, µ 6= ω, (b) b = 0, µ = ω, (c) b > 0.

Solution:

(a) If b = 0, and µ 6= ω, the general solution to the homogeneous equation is given by

uc(t) = c1 cosωt+ c2 sinωt

where c1 and c2 are arbitrary constants, and a particular solution to the nonhomogeneous equation is
given by

up(t) =
f0

ω2 − µ2
cosµt.

The general solution to the nonhomogeneous equation is

u(t) = c1 cosωt+ c2 sinωt+
f0

ω2 − µ2
cosµt,

and applying the initial conditions

u(0) = 0 implies c1 = − f0
ω2 − µ2

and u′(0) = 0 implies c2 = 0,

and the solution to the initial value problem is

u(t) =
f0

ω2 − µ2
(cosµt− cosωt).



(b) If b = 0 and µ = ω, the general solution to the homogeneous equation is given by

uc(t) = c1 cosωt+ c2 sinωt

where c1 and c2 are arbitrary constants, and a particular solution to the nonhomogeneous equation is
given by

up(t) =
f0t

2ω
sinωt.

The general solution to the nonhomogeneous equation is

u(t) = c1 cosωt+

(

c2 +
f0t

2ω

)

sinωt,

and applying the initial conditions

u(0) = 0 implies c1 = 0 and u′(0) = 0 implies c2 = 0,

and the solution to the initial value problem is

u(t) =
f0t

2ω
sinωt.

(c) If b > 0, the general solution to the homogeneous equation is

uc(t) = (c1 cosβt+ c2 sinβt)e
−

b
2 t, where β =

√

ω2 − b2/4, if 0 < b < 2ω,

uc(t) = (c1 + c2t)e
−

b
2 t, if b = 2ω,

uc(t) = (c1e
βt + c2e−βt)e−

b
2 t, where β =

√

b2/4− ω2, if b > 2ω

where c1 and c2 are arbitrary constants, and a particular solution to the nonhomogeneous equation is

up(t) =
f0

(ω2 − µ2)2 + µ2b2
[(ω2 − µ2) cosµt+ µb sinµt].

Now,

u′

c(t) =











































[(

βc2 −
c1b

2

)

cosβt−
(

βc1 +
c2b

2

)

sinβt

]

e−
b
2 t

[

c2 −
b

2
(c1 + c2t)

]

e−
b
2 t

[(

β − b

2

)

c1e
βt −

(

β +
b

2

)

c2e
−βt

]

e−
b
2 t

in each of the respective cases above. Therefore,

uc(0) =



















c1

c1

c1 + c2

and

u′

c(0) =































βc2 −
c1b

2

c2 −
bc1
2

(

β − b

2

)

c1 −
(

β +
b

2

)

c2

and

up(0) =
f0(ω

2 − µ2)

(ω2 − µ2)2 + µ2b2
and u′

p(0) =
f0µ

2b

(ω2 − µ2)2 + µ2b2
.



Since u(t) = uc(t) + up(t), applying the initial conditions, we have

u(0) = 0 implies uc(0) = −up(0) and u′(0) = 0 implies u′

c(0) = −u′

p(0),

and
u(t) = uc(t) + up(t)

with c1 and c2 as determined above.

Question 10.

Use variation of parameters to find a particular solution of the differential equation

d2y

dx2
+ y = sinx,

if two independent solutions to the homogeneous equation are given by y1(x) = cosx, and y2(x) = sinx. Be
sure that the differential equation is in the correct form.

Solution: The Wronskian is

W (x) =

∣

∣

∣

∣

cosx sinx
− sinx cosx

∣

∣

∣

∣

cos2 x+ sin2 x = 1.

Writing
y(x) = v1(x)y1(x) + v2(x)y2(x),

and forcing y(x) to be a solution to the original differential equations gives

v1(x) = −
∫

y2(x)f(x)

W (x)
dx = −

∫

sin2 x dx = −1

2

∫

(1− cos 2x) dx

and

v1(x) = −1

2
x+

1

4
sin 2x.

Also

v2(x) =

∫

y1(x)f(x)

W (x)
dx =

∫

cosx sinx dx =
1

2
sin2 x,

and

v2(x) =
1

2
sin2 x.

Therefore

yp(x) = v1(x)y1(x) + v2(x)y2(x) = −1

2
x cosx+

1

4
sin 2x cosx+

1

2
sin3 x,

that is,

yp(x) = −1

2
x cosx+

1

2
(sinx cos2 x+ sin3 x) = −1

2
x cosx+

1

2
sinx

and we may take

yp(x) = −1

2
x cosx.



Question 11.

Use variation of parameters to show that a particular solution of the differential equation

d2u

dt2
− γ2u = f(t)

is given by

up(t) =
1

γ

∫ t

0

sinh γ(t− z)f(z) dz.

Solution: Two independent solutions of the homogeneous equation are given by

u1(t) = eγt and u2(t) = e−γt,

and the Wronskian is

W (t) =

∣

∣

∣

∣

eγt e−γt

γeγt −γe−γt

∣

∣

∣

∣

= −2γ.

We look for a particular solution of the form

up(t) = v1(t)u1(t) + v2(t)u2(t),

and forcing this to be a solution to the original differential equation gives

v′1(t) = −u2f

W
and v′2(t) =

u1f

W
,

and integrating, we get

v1(t) = −
∫ t

0

u2(z)f(z)

W (z)
dz and v2(t) =

∫ t

0

u1(z)f(z)

W (z)
dz.

Therefore the particular solution can be written as

up(t) = −u1(t)

∫ t

0

u2(z)f(z)

W (z)
dz + u2(t)

∫ t

0

u1(z)f(z)

W (z)
dz,

and so

up(t) = − 1

2γ

[

−eγt
∫ t

0

e−γz dz + e−γt

∫ t

0

eγz dz

]

=
1

γ

∫ t

0

sinh γ(t− z) dz.

Question 12.

Many differential equations are really Bessel’s equation in disguised form. Consider the following equation:

x2 d
2u

dx2
+ (2c+ 1)x

du

dx
+ [a2b2x2b + (c2 − µ2b2)]u = 0 (∗)

where a, b, c, µ are constants. (µ is not an integer).

(a) Show that the change of variables defined by

s = axb, and w(s) = xcu(x)

transforms equation (∗) into Bessel’s equation for w(s).

(b) Write the general solution of the equation (∗) in terms of Bessel functions.



Solution: Let s = axb, and w(s) = xcu(x), then

x =
( s

a

)

1
b

and u(x) =
w(s)
( s

a

)

c
b

.

Now,

ds

dx
= abxb−1 = ab

( s

a

)

b−1
b

= a
1
b bs1−

1
b .

Define

A = a
c
b , λ =

1

b
, B = a

1
b b,

then
ds

dx
= Bs1−λ, u(x) = As−cλw(s),

and
du

dx
=

d

ds

(

As−cλw(s)
) ds

dx
= AB

[

s1−(1+c)λw′ − cλs−(1+c)λw
]

and

d2u

dx2
=

d

ds

{

AB
[

s1−(1+c)λw′ − cλs−(1+c)λw
]} ds

dx

= AB2
{

s2−(2+c)λw′′ + [1− (1 + 2c)λ]s1−(2+c)λw′ + c(1 + c)λ2s−(2+c)λw
}

and

x2 d2u

dx2
= acλb2s−cλ

[

s2w′′ + [1− (1 + 2c)λ]sw′ + c(1 + c)λ2w
]

(2c+ 1)x
du

dx
= (1 + 2c)acλbs−cλ(sw′ − cλw)

(check these!)

From (∗) we have

acλb2s−cλ{s2w′′ + [1− (1 + 2c)λ]sw′ + c(1 + c)λ2w}

+ acλbs−cλ(1 + 2c)(sw′ − cλw) + [a2b2a−2s2 + c2 − µ2b2]acλs−cλw = 0

or

acλb2s−cλ

{

s2w′′ +

[

1− (1 + 2c)λ+
1

b
(1 + 2c)

]

sw′

+

[

c(c+ 1)λ2 − 1

b
(1 + 2c)cλ+ s2 +

c2

b2
− µ2

]

w

}

= 0.

Therefore
s2w′′ + sw′ + (s2 − µ2)w = 0

which is Bessel’s equation, and the solution is

w(s) = c1Jµ(s) + c2J−µ(s)

and
u(x) = x−cw(s) = x−cw(axb) = x−c[c1Jµ(ax

b) + c2J−µ(ax
b)].



Question 13.

Use the result of the previous problem to obtain the general solution of Airy’s equation

u′′ + xu = 0.

Solution: Solve u′′ + xu = 0 by choosing a, b, c, µ so that (∗) looks like u′′ + xu = 0.

Since
d2u

dx2
+ (2c+ 1)

1

x

du

dx
+
[

a2b2x2(b−1) + (c2 − µ2b2)x−2
]

u = 0,

we need

2c+ 1 = 0

2(b− 1) = 1

a2b2 = 1

c2 − µ2b2 = 0,

that is,

c = −1

2
, b =

3

2
, a =

2

3
, µ =

1

3
.

The solution to Airy’s equation u′′ + xu = 0 is

u(x) = x1/2

[

c1J 1
3

(

2
3x

3
2

)

+ c2J
−

1
3

(

2
3x

3
2

)]

.


