

Math 300 Spring - Summer 2018

Problem Set # 4

Question 1.

Solve the vibrating circular membrane problem for the radially symmetric case, that is, solve the initial value – boundary value problem

$$\frac{\partial^2 u}{\partial t^2} = \frac{4}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right), \quad 0 \leq r \leq 1, \quad t \geq 0$$

$$u(1, t) = 0,$$

$$u(r, 0) = 5J_0(z_3 r)$$

$$\frac{\partial u}{\partial t}(r, 0) = 0, \quad 0 \leq r \leq 1,$$

where $J_0(z)$ denotes the Bessel function of the first kind of order zero, and z_n denotes the n^{th} zero of $J_0(z)$.

Question 2.

Solve the heat equation with time-dependent sources and boundary conditions:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + Q(x, t)$$

$$u(x, 0) = f(x)$$

Reduce the problem to one with homogeneous boundary conditions if

$$u(0, t) = A(t) \quad \text{and} \quad \frac{\partial u}{\partial x}(L, t) = B(t).$$

Hint: First use $u(x, t) = w(x, t) + v(x, t)$ and assume that v satisfies just the boundary conditions (and nothing else), then use the method of eigenfunction expansions to solve for $w(x, t)$.

Question 3.

Solve the two-dimensional heat equation with circularly symmetric time-independent sources, boundary conditions, and initial conditions (inside a circle):

$$\frac{\partial u}{\partial t} = \frac{k}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + Q(r)$$

with

$$u(r, 0) = f(r) \quad \text{and} \quad u(a, t) = T.$$

Question 4.

Consider the heat equation with a steady source

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + Q(x)$$

subject to the initial and boundary conditions:

$$u(0, t) = 0, \quad u(L, t) = 0, \quad \text{and} \quad u(x, 0) = f(x).$$

Obtain the solution by the method of eigenfunction expansion. Show that the solution approaches a steady-state solution.

Question 5.

(a) Show that the Fourier transform is a linear operator; that is, show that

$$\mathcal{F}[c_1 f(x) + c_2 g(x)] = c_1 F(\omega) + c_2 G(\omega)$$

(b) Show that $\mathcal{F}[f(x)g(x)] \neq F(\omega)G(\omega)$.

Question 6.

If $F(\omega)$ is the Fourier transform of $f(x)$, show that the inverse Fourier transform of $e^{i\omega\beta} F(\omega)$ is $f(x - \beta)$. This result is known as the **Shift Theorem** for Fourier transforms.

Question 7.

(a) Solve

$$\begin{aligned} \frac{\partial u}{\partial t} &= k \frac{\partial^2 u}{\partial x^2} - \gamma u, \quad -\infty < x < \infty, \quad t > 0 \\ u(x, 0) &= f(x), \quad -\infty < x < \infty. \end{aligned}$$

(b) Does your solution suggest a simplifying transformation?

Question 8.

Solve

$$\begin{aligned} \frac{\partial u}{\partial t} &= k \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < \infty, \quad t > 0 \\ \frac{\partial u}{\partial x}(0, t) &= 0, \quad t > 0 \\ u(x, 0) &= f(x), \quad 0 < x < \infty. \end{aligned}$$