

Solutions to Problem Set1

Math 300 - Spring-Summer 2018

Question 1.

For the following functions, sketch the Fourier series of $f(x)$ on the interval $-L \leq x \leq L$, and determine the Fourier coefficients:

$$(a) \quad f(x) = \begin{cases} 1 & \text{for } |x| < L/2 \\ 0 & \text{for } |x| > L/2 \end{cases}$$

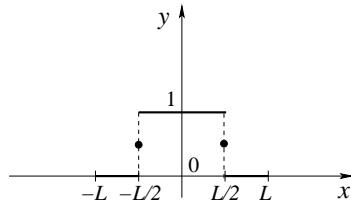
$$(b) \quad f(x) = \begin{cases} 1 & \text{if } 0 < x < L \\ 0 & \text{if } -L < x < 0 \end{cases}$$

SOLUTION:

(a) From Dirichlet's theorem the Fourier series of $f(x)$ converges to

$$\frac{1}{2} [f(x^+) + f(x^-)]$$

if $-L \leq x \leq L$, and the graph of the Fourier series of $f(x)$ on the interval $-L \leq x \leq L$ is shown below.



Since $f(x)$ is an even piecewise smooth function on the interval $[-L, L]$, it has a Fourier series representation of the form

$$f(x) \sim a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}$$

where

$$a_0 = \frac{1}{L} \int_0^L f(x) dx = \frac{1}{L} \int_0^{\frac{L}{2}} 1 dx = \frac{1}{2},$$

and

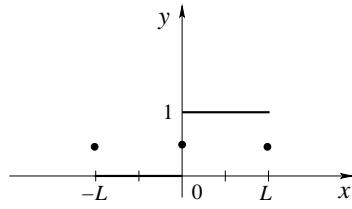
$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx = \frac{2}{L} \int_0^{\frac{L}{2}} \cos \frac{n\pi x}{L} dx = \frac{2}{n\pi} \sin \frac{n\pi x}{L} \Big|_0^{\frac{L}{2}} = \frac{2}{n\pi} \sin \frac{n\pi}{2}$$

for $n \geq 1$.

(b) Again, from Dirichlet's theorem the Fourier series of $f(x)$ converges to

$$\frac{1}{2} [f(x^+) + f(x^-)]$$

if $-L \leq x \leq L$, and the graph of the Fourier series of $f(x)$ on the interval $-L \leq x \leq L$ is shown below.



Since $f(x) - \frac{1}{2}$ is an odd piecewise smooth function on the interval $[-L, L]$, it has a Fourier series representation of the form

$$f(x) - \frac{1}{2} \sim \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

where

$$\begin{aligned} b_n &= \frac{2}{L} \int_0^L \left(f(x) - \frac{1}{2} \right) \sin \frac{n\pi x}{L} dx = \frac{1}{L} \int_0^L \sin \frac{n\pi x}{L} dx \\ &= -\frac{1}{n\pi} \cos \frac{n\pi x}{L} \Big|_0^L = -\frac{1}{n\pi} (\cos n\pi - 1) \\ &= \frac{1}{n\pi} [1 - (-1)^n] \end{aligned}$$

for $n \geq 1$.

Question 2.

Show that the Fourier series operation is linear: that is, show that the Fourier series of

$$c_1 f(x) + c_2 g(x)$$

is the sum of c_1 times the Fourier series of $f(x)$ and c_2 times the Fourier series of $g(x)$.

SOLUTION: Suppose that the Fourier series of f and g are given by

$$f(x) \sim A_0 + \sum_{n=1}^{\infty} \left(A_n \cos \frac{n\pi x}{L} + B_n \sin \frac{n\pi x}{L} \right) \quad \text{and} \quad g(x) \sim C_0 + \sum_{n=1}^{\infty} \left(C_n \cos \frac{n\pi x}{L} + D_n \sin \frac{n\pi x}{L} \right)$$

where

$$A_0 = \frac{1}{2L} \int_{-L}^L f(x) dx, \quad A_n = \frac{1}{L} \int_{-L}^L f(x) \cos \frac{n\pi x}{L} dx, \quad B_n = \frac{1}{L} \int_{-L}^L f(x) \sin \frac{n\pi x}{L} dx$$

for $n \geq 1$, and

$$C_0 = \frac{1}{2L} \int_{-L}^L g(x) dx, \quad C_n = \frac{1}{L} \int_{-L}^L g(x) \cos \frac{n\pi x}{L} dx, \quad D_n = \frac{1}{L} \int_{-L}^L g(x) \sin \frac{n\pi x}{L} dx$$

for $n \geq 1$.

If c_1 and c_2 are scalars, and the Fourier series of $c_1f + c_2g$ is

$$c_1f(x) + c_2g(x) \sim E_0 + \sum_{n=1}^{\infty} \left(E_n \cos \frac{n\pi x}{L} + F_n \sin \frac{n\pi x}{L} \right),$$

then

$$E_0 = \frac{1}{2L} \int_{-L}^L (c_1f(x) + c_2g(x)) dx = \frac{c_1}{2L} \int_{-L}^L f(x) dx + \frac{c_2}{2L} \int_{-L}^L g(x) dx = c_1A_0 + c_2C_0.$$

Also,

$$\begin{aligned} E_n &= \frac{1}{L} \int_{-L}^L (c_1f(x) + c_2g(x)) \cos \frac{n\pi x}{L} dx \\ &= \frac{c_1}{L} \int_{-L}^L f(x) \cos \frac{n\pi x}{L} dx + \frac{c_2}{L} \int_{-L}^L g(x) \cos \frac{n\pi x}{L} dx \\ &= c_1A_n + c_2C_n \end{aligned}$$

for $n \geq 1$. Similarly,

$$\begin{aligned} F_n &= \frac{1}{L} \int_{-L}^L (c_1f(x) + c_2g(x)) \sin \frac{n\pi x}{L} dx \\ &= \frac{c_1}{L} \int_{-L}^L f(x) \sin \frac{n\pi x}{L} dx + \frac{c_2}{L} \int_{-L}^L g(x) \sin \frac{n\pi x}{L} dx \\ &= c_1B_n + c_2D_n \end{aligned}$$

for $n \geq 1$. Therefore the Fourier series for $c_1f + c_2g$ is

$$\begin{aligned} c_1f(x) + c_2g(x) &\sim c_1A_0 + c_2C_0 + \sum_{n=1}^{\infty} \left((c_1A_n + c_2C_n) \cos \frac{n\pi x}{L} + (c_1B_n + c_2D_n) \sin \frac{n\pi x}{L} \right) \\ &= c_1 \left[A_0 + \sum_{n=1}^{\infty} \left(A_n \cos \frac{n\pi x}{L} + B_n \sin \frac{n\pi x}{L} \right) \right] + c_2 \left[C_0 + \sum_{n=1}^{\infty} \left(C_n \cos \frac{n\pi x}{L} + D_n \sin \frac{n\pi x}{L} \right) \right] \\ &\sim c_1f(x) + c_2g(x). \end{aligned}$$

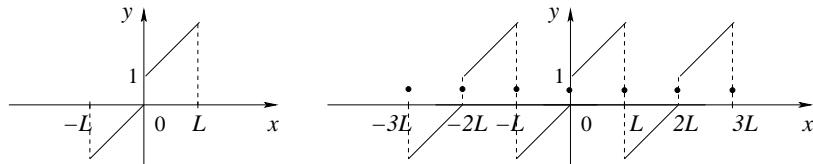
Question 3.

For the following functions, sketch $f(x)$, the Fourier series of $f(x)$, the Fourier sine series of $f(x)$, and the Fourier cosine series of $f(x)$, and determine the Fourier coefficients:

$$(a) f(x) = \begin{cases} x & -L < x < 0 \\ 1+x & 0 < x < L \end{cases} \quad (b) f(x) = \begin{cases} 2, & -L < x < 0 \\ e^{-x} & 0 < x < L \end{cases}$$

SOLUTION:

(a) *Fourier Series:* The graphs of $f(x)$ and the Fourier series of $f(x)$ are shown below.



The Fourier series representation of $f(x)$ is

$$f(x) \sim a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right),$$

where

$$a_0 = \frac{1}{2L} \int_{-L}^L f(x) dx = \frac{1}{2L} \int_{-L}^L x dx + \frac{1}{2L} \int_0^L 1 dx = \frac{1}{2L} L = \frac{1}{2},$$

since the function x is an odd function on $[-L, L]$.

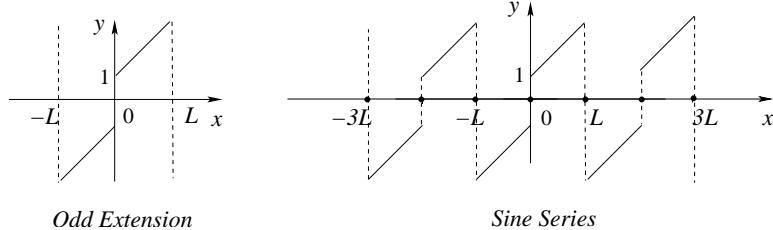
For $n \geq 1$,

$$\begin{aligned} a_n &= \frac{1}{L} \int_{-L}^L f(x) \cos \frac{n\pi x}{L} dx = \frac{1}{L} \int_{-L}^L x \cos \frac{n\pi x}{L} dx + \frac{1}{L} \int_0^L \cos \frac{n\pi x}{L} dx \\ &= \frac{1}{n\pi} \sin \frac{n\pi x}{L} \Big|_0^L = 0, \end{aligned}$$

since $x \cos \frac{n\pi x}{L}$ is an odd function on $[-L, L]$, and

$$\begin{aligned} b_n &= \frac{1}{L} \int_{-L}^L f(x) \sin \frac{n\pi x}{L} dx = \frac{1}{L} \int_{-L}^L x \sin \frac{n\pi x}{L} dx + \frac{1}{L} \int_0^L \sin \frac{n\pi x}{L} dx \\ &= \frac{2}{L} \int_0^L x \sin \frac{n\pi x}{L} dx + \frac{1}{L} \int_0^L \sin \frac{n\pi x}{L} dx \\ &= \frac{2}{L} \left[-\frac{L}{n\pi} x \cos \frac{n\pi x}{L} \Big|_0^L + \frac{L}{n\pi} \int_0^L \cos \frac{n\pi x}{L} dx \right] + \frac{1}{L} \left(-\frac{L}{n\pi} \cos \frac{n\pi x}{L} \right) \Big|_0^L \\ &= \frac{1}{n\pi} [1 - (-1)^n] - \frac{2L(-1)^n}{n\pi}. \end{aligned}$$

Fourier Sine Series: The graphs of the odd extension of $f(x)$ to the interval $[-L, L]$ and the Fourier sine series of $f(x)$ are shown below.



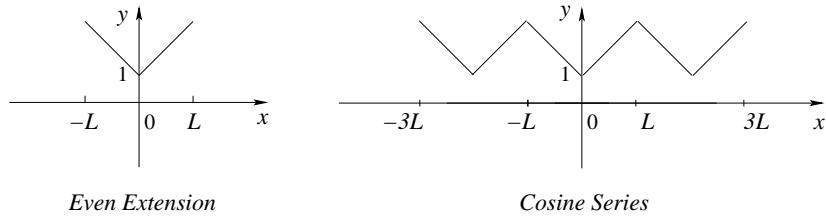
The Fourier sine series representation of $f(x)$ is

$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L},$$

where

$$\begin{aligned} b_n &= \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx = \frac{2}{L} \int_0^L (1+x) \sin \frac{n\pi x}{L} dx \\ &= \frac{2}{L} \left[-\frac{L}{n\pi} (1+x) \cos \frac{n\pi x}{L} \Big|_0^L + \frac{L}{n\pi} \int_0^L \cos \frac{n\pi x}{L} dx \right] \\ &= \frac{2}{n\pi} [1 - (-1)^n] - \frac{2L(-1)^n}{n\pi}. \end{aligned}$$

Fourier Cosine Series: The graphs of the even extension of $f(x)$ to the interval $[-L, L]$ and the Fourier cosine series of $f(x)$ are shown below.



The Fourier cosine series representation of $f(x)$ is

$$f(x) \sim a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L},$$

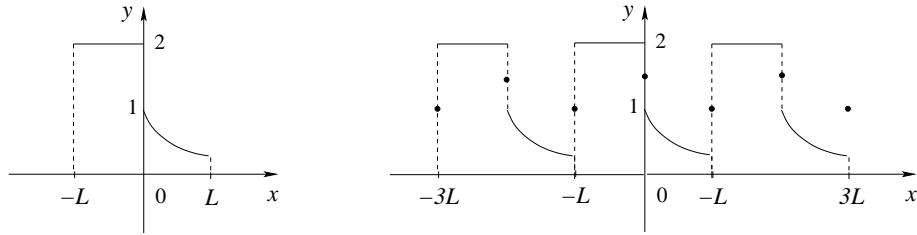
where

$$a_0 = \frac{1}{L} \int_0^L f(x) dx = \frac{1}{L} \int_0^L (1+x) dx = \frac{1}{L} \left[x \Big|_0^L + \frac{x^2}{2} \Big|_0^L \right] = \left(1 + \frac{L}{2} \right),$$

and for $n \geq 1$,

$$\begin{aligned} a_n &= \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx = \frac{2}{L} \int_0^L (1+x) \cos \frac{n\pi x}{L} dx \\ &= \frac{2}{L} \left[\frac{L}{n\pi} (1+x) \sin \frac{n\pi x}{L} \Big|_0^L - \frac{L}{n\pi} \int_0^L \sin \frac{n\pi x}{L} dx \right] \\ &= \frac{2L}{n^2\pi^2} \cos \frac{n\pi x}{L} \Big|_0^L = \frac{2L}{n^2\pi^2} [(-1)^n - 1]. \end{aligned}$$

(b) **Fourier Series:** The graphs of $f(x)$ and the Fourier series of $f(x)$ are shown below.



The Fourier series representation of $f(x)$ is

$$f(x) \sim a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L}),$$

where

$$a_0 = \frac{1}{2L} \int_{-L}^L f(x) dx = \frac{1}{2L} \int_{-L}^0 2 dx + \frac{1}{2L} \int_0^L e^{-x} dx = \frac{1}{2L} (2L + 1 - e^{-L}).$$

Since

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (b \sin bx + a \cos bx),$$

then

$$\begin{aligned} a_n &= \frac{1}{L} \int_{-L}^L f(x) \cos \frac{n\pi x}{L} \, dx = \frac{1}{L} \int_{-L}^0 2 \cos \frac{n\pi x}{L} \, dx + \frac{1}{L} \int_0^L e^{-x} \cos \frac{n\pi x}{L} \, dx \\ &= \frac{2}{n\pi} \sin \frac{n\pi x}{L} \Big|_{-L}^0 + \frac{n\pi}{L^2 + n^2\pi^2} e^{-x} \sin \frac{n\pi x}{L} \Big|_0^L - \frac{L}{L^2 + n^2\pi^2} e^{-x} \cos \frac{n\pi x}{L} \Big|_0^L \\ &= \frac{L}{L^2 + n^2\pi^2} [1 - e^{-L}(-1)^n] \end{aligned}$$

for $n \geq 1$.

Since

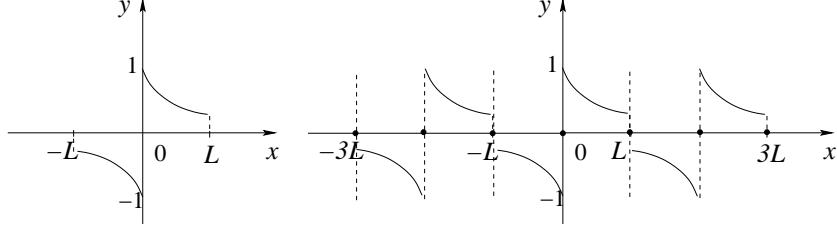
$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx),$$

then

$$\begin{aligned} b_n &= \frac{1}{L} \int_{-L}^L f(x) \sin \frac{n\pi x}{L} \, dx = \frac{1}{L} \int_{-L}^0 2 \sin \frac{n\pi x}{L} \, dx + \frac{1}{L} \int_0^L e^{-x} \sin \frac{n\pi x}{L} \, dx \\ &= -\frac{2}{n\pi} \cos \frac{n\pi x}{L} \Big|_{-L}^0 - \frac{L}{L^2 + n^2\pi^2} e^{-x} \sin \frac{n\pi x}{L} \Big|_0^L - \frac{n\pi}{L^2 + n^2\pi^2} e^{-x} \cos \frac{n\pi x}{L} \Big|_0^L \\ &= \frac{n\pi}{L^2 + n^2\pi^2} [1 - e^{-L}(-1)^n] \end{aligned}$$

for $n \geq 1$.

Fourier Sine Series: The graphs of the odd extension of $f(x)$ to the interval $[-L, L]$ and the Fourier sine series of $f(x)$ are shown below.



The Fourier sine series representation of $f(x)$ is

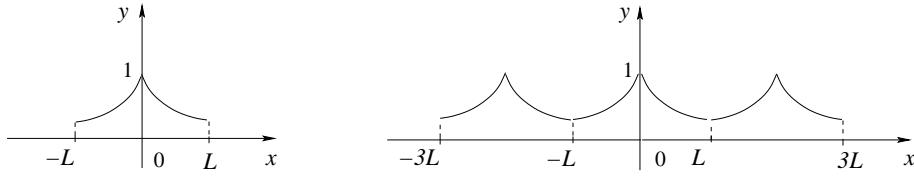
$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L},$$

where

$$\begin{aligned} b_n &= \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} \, dx = \frac{2}{L} \int_0^L e^{-x} \sin \frac{n\pi x}{L} \, dx \\ &= -\frac{2L}{L^2 + n^2\pi^2} e^{-x} \sin \frac{n\pi x}{L} \Big|_0^L - \frac{2n\pi}{L^2 + n^2\pi^2} e^{-x} \cos \frac{n\pi x}{L} \Big|_0^L \\ &= \frac{2n\pi}{L^2 + n^2\pi^2} [1 - e^{-L}(-1)^n] \end{aligned}$$

for $n \geq 1$.

Fourier Cosine Series: The graphs of the even extension of $f(x)$ to the interval $[-L, L]$ and the Fourier cosine series of $f(x)$ are shown below.



The Fourier cosine series representation of $f(x)$ is

$$f(x) \sim a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L},$$

where

$$a_0 = \frac{1}{L} \int_0^L f(x) dx = \frac{1}{L} \int_0^L e^{-x} dx = -\frac{1}{L} e^{-x} \Big|_0^L = \frac{1}{L} (1 - e^{-L}).$$

Since

$$\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (b \sin bx + a \cos bx),$$

then

$$\begin{aligned} a_n &= \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx = \frac{2}{L} \int_0^L e^{-x} \cos \frac{n\pi x}{L} dx \\ &= \frac{2n\pi}{L^2 + n^2\pi^2} e^{-x} \sin \frac{n\pi x}{L} \Big|_0^L - \frac{2L}{L^2 + n^2\pi^2} e^{-x} \cos \frac{n\pi x}{L} \Big|_0^L \\ &= \frac{2L}{L^2 + n^2\pi^2} [1 - e^{-L}(-1)^n] \end{aligned}$$

for $n \geq 1$.

Question 4.

Show that e^x is the sum of an even function and an odd function.

SOLUTION: We can write

$$e^x = \frac{e^x + e^{-x}}{2} + \frac{e^x - e^{-x}}{2} = \cosh x + \sinh x,$$

and $\cosh x$ is an even function while $\sinh x$ is an odd function.

In general, if $f(x)$ is an arbitrary function, then we can write

$$f(x) = f_{\text{even}}(x) + f_{\text{odd}}(x)$$

where

$$f_{\text{even}}(x) = \frac{f(x) + f(-x)}{2}$$

is even, and

$$f_{\text{odd}}(x) = \frac{f(x) - f(-x)}{2}$$

is odd.

Question 5.

Find all solutions to the boundary value problem

$$\begin{aligned}\phi''(x) + \phi(x) &= 0, \quad 0 \leq x \leq 1 \\ \phi(0) &= 0 \\ \phi(1) &= 0.\end{aligned}$$

SOLUTION: The general solution to the differential equation is

$$\phi(x) = A \cos x + B \sin x, \quad 0 \leq x \leq 1.$$

Applying the first boundary condition,

$$\phi(0) = A = 0,$$

the solution becomes

$$\phi(x) = B \sin x, \quad 0 \leq x \leq 1.$$

Applying the second boundary condition,

$$\phi(1) = B \sin 1 = 0,$$

and since $\sin 1 \neq 0$, then $B = 0$, and the only solution to the boundary value problem is the trivial solution

$$\phi(x) = 0$$

for $0 \leq x \leq 1$.

Question 6.

Consider the integral $\int_0^1 \frac{dx}{1+x^2}$.

- (a) Evaluate the integral explicitly.
- (b) Use the Taylor series of $\frac{1}{1+x^2}$ (a geometric series) to obtain an infinite series for the integral.
- (c) Equate part (a) to part (b) in order to derive a formula for π .

SOLUTION:

- (a) Since

$$\frac{d}{dx} (\tan^{-1} x) = \frac{1}{1+x^2},$$

we have

$$\int_0^1 \frac{1}{1+x^2} dx = \tan^{-1} x \Big|_0^1 = \tan^{-1} 1 - \tan^{-1} 0 = \frac{\pi}{4}.$$

- (b) Recall that the geometric series

$$\frac{1}{1+t^2} = 1 - t^2 + t^4 - t^6 + \dots,$$

that is,

$$\frac{1}{1+t^2} = \sum_{n=0}^{\infty} (-1)^n t^{2n}$$

converges for all $-1 < t < 1$.

Integrating from 0 to x , where $|x| < 1$, we get

$$\begin{aligned}
\int_0^x \frac{1}{1+t^2} dt &= \int_0^x \left(\sum_{n=0}^{\infty} (-1)^n t^{2n} \right) dt \\
&= \sum_{n=0}^{\infty} (-1)^n \int_0^x t^{2n} dt \\
&= \sum_{n=0}^{\infty} (-1)^n \frac{t^{2n+1}}{2n+1} \Big|_0^x \\
&= \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1},
\end{aligned}$$

and therefore

$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \dots$$

for $-1 < x < 1$, and this is *Gregory's series* for $\tan^{-1} x$, discovered by James Gregory about 1670.

Letting $x \rightarrow 1^-$, then a theorem of Abel tells us that

$$\begin{aligned}
\frac{\pi}{4} &= \int_0^1 \frac{1}{1+t^2} dt = \lim_{x \rightarrow 1^-} \int_0^x \frac{1}{1+t^2} dt = \lim_{x \rightarrow 1^-} \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} \\
&= \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \lim_{x \rightarrow 1^-} x^{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1},
\end{aligned}$$

so that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots,$$

this is *Leibniz's formula* for $\frac{\pi}{4}$, discovered by Leibniz in 1673.

(c) From part (b), we have

$$\pi = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}.$$

The convergence is very slow however.

Another proof of Leibniz's formula which doesn't require integrating an infinite series term-by-term is given below.

$$\begin{aligned}
1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{(-1)^{n-1}}{2n-1} &= \int_0^1 (1 - x^2 + x^4 - x^6 + \dots + (-1)^{n-1} x^{2n-2}) dx \\
&= \int_0^1 \frac{1 - x^{2n}}{1 + x^2} dx \\
&= \int_0^1 \frac{1}{1 + x^2} dx - \int_0^1 \frac{x^{2n}}{1 + x^2} dx
\end{aligned}$$

and therefore,

$$\left| \frac{\pi}{4} - \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{(-1)^{n-1}}{2n-1} \right) \right| = \int_0^1 \frac{x^{2n}}{1 + x^2} dx \leq \int_0^1 x^{2n} dx = \frac{1}{2n+1} \rightarrow 0$$

as $n \rightarrow \infty$.

Question 7.

For continuous functions,

- (a) Under what conditions does $f(x)$ equal its Fourier series for all $x \in [-L, L]$?
- (b) Under what conditions does $f(x)$ equal its Fourier sine series for all $x \in [0, L]$?
- (c) Under what conditions does $f(x)$ equal its Fourier cosine series for all $x \in [0, L]$?

Hint: What does the Fourier series converge to at the end points of the interval?

- (a) From Dirichlet's theorem, we know that for any x_0 with $-L < x_0 < L$, the Fourier series of f converges to $f(x_0)$ since f is continuous at x_0 .

We also know that at the endpoints $x = -L$ and $x = L$, the Fourier series converges to

$$\frac{1}{2} [f(L^-) + f(-L^+)],$$

and if f is continuous at the endpoints, that is, continuous from the left at $x = L$ and continuous from the right at $x = -L$, then the Fourier series converges to

$$\frac{f(L) + f(-L)}{2}$$

at $x = L$ and at $x = -L$, so that the Fourier series converges to $f(x)$ for all $x \in [-L, L]$ if and only if $f(L) = f(-L)$.

- (b) Again, from Dirichlet's theorem, if $0 < x_0 < L$, then the Fourier sine series of f converges to $f(x_0)$ since f is continuous at x_0 .

If f_{odd} is the odd extension of f to $[-L, L]$, then at $x = 0$, the Fourier sine series of f converges to

$$\frac{1}{2} [f_{\text{odd}}(0^-) + f_{\text{odd}}(0^+)] = \frac{1}{2} [-f(0) + f(0)] = 0,$$

and the Fourier sine series converges to f at $x = 0$ if and only if $f(0) = 0$.

If f_{odd} is the odd extension of f to $[-L, L]$, then at $x = L$, the Fourier sine series of f converges to

$$\frac{1}{2} [f_{\text{odd}}(L^-) + f_{\text{odd}}(-L^+)] = \frac{1}{2} [f_{\text{odd}}(L) + f_{\text{odd}}(-L)] = \frac{1}{2} [f(L) - f(L)] = 0,$$

and the Fourier sine series converges to f at $x = L$ if and only if $f(L) = 0$.

- (c) From Dirichlet's theorem, if $0, x_0 < L$, then the Fourier cosine series of f converges to $f(x_0)$ since f is continuous at x_0 .

If f_{even} is the even extension of f to $[-L, L]$, then at $x = 0$, the Fourier cosine series of f converges to

$$\frac{1}{2} [f_{\text{even}}(0^-) + f_{\text{even}}(0^+)] = \frac{1}{2} [f(0) + f(0)] = f(0),$$

and the Fourier cosine series of f converges to f at $x = 0$ if and only if f is continuous from the right at $x = 0$.

If f_{even} is the even extension of f to $[-L, L]$, then at $x = L$, the Fourier cosine series of f converges to

$$\frac{1}{2} [f_{\text{even}}(L^-) + f_{\text{even}}(-L^+)] = \frac{1}{2} [f_{\text{even}}(L) + f_{\text{even}}(-L)] \frac{1}{2} [f(L) + f(L)] = f(L),$$

and the Fourier cosine series of f converges to f at $x = L$ if and only if f is continuous from the left at $x = L$.

Question 8.

Consider the boundary value – initial value problem

$$\begin{aligned}\frac{\partial u}{\partial t} &= k \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < L, t > 0 \\ \frac{\partial u}{\partial x}(0, t) &= 0, \quad t > 0; \quad \frac{\partial u}{\partial x}(L, t) = 0, \quad t > 0; \quad u(x, 0) = f(x), \quad 0 < x < L.\end{aligned}$$

Solve this problem by looking for a solution as a Fourier cosine series. Assume that u and $\frac{\partial u}{\partial x}$ are continuous and $\frac{\partial^2 u}{\partial x^2}$ and $\frac{\partial u}{\partial t}$ are piecewise smooth. Justify all differentiations of infinite series.

SOLUTION: We assume a solution of the form

$$u(x, t) = \sum_{n=0}^{\infty} a_n(t) \cos \frac{n\pi x}{L}$$

and assuming all derivatives are continuous, we have

$$\frac{\partial^2 u}{\partial x^2} = - \sum_{n=0}^{\infty} a_n(t) \left(\frac{n\pi}{L} \right)^2 \cos \frac{n\pi x}{L}$$

and since $u(x, t)$ satisfies the heat equation,

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2},$$

then we have

$$\sum_{n=0}^{\infty} a'_n(t) \cos \frac{n\pi x}{L} = -k \sum_{n=0}^{\infty} a_n(t) \left(\frac{n\pi}{L} \right)^2 \cos \frac{n\pi x}{L}.$$

Collecting terms that multiply $\cos \frac{n\pi x}{L}$ for $n \geq 0$ for $n \geq 1$, and using the fact that these trigonometric functions are linearly independent (they are orthogonal on the interval $[0, L]$), then we get

$$a'_n(t) = -ka_n(t) \left(\frac{n\pi}{L} \right)^2,$$

and we can solve these first order linear ordinary differential equations for $a_n(t)$ to get

$$a_n(t) = A_n e^{-\left(\frac{n\pi}{L} \right)^2 kt},$$

and the solution $u(x, t)$ becomes

$$u(x, t) = \sum_{n=0}^{\infty} A_n e^{-\left(\frac{n\pi}{L} \right)^2 kt} \cos \frac{n\pi x}{L}.$$

Differentiating this with respect to x , we get

$$\frac{\partial u}{\partial x}(x, t) = - \sum_{n=0}^{\infty} A_n e^{-\left(\frac{n\pi}{L} \right)^2 kt} \left(\frac{n\pi}{L} \right) \sin \frac{n\pi x}{L},$$

and setting $x = 0$, we get

$$0 = \frac{\partial u}{\partial x}(0, t),$$

and the first boundary condition is satisfied.

The solution is now

$$u(x, t) = \sum_{n=0}^{\infty} A_n e^{-\left(\frac{n\pi}{L}\right)^2 kt} \cos \frac{n\pi x}{L},$$

and we note that the second boundary condition $\frac{\partial u}{\partial x}(L, t) = 0$ is also satisfied, so we only need to find the constants A_n to satisfy the initial condition $u(x, 0) = f(x)$.

Setting $t = 0$ in the above expression for $u(x, t)$, we have

$$f(x) = u(x, 0) = \sum_{n=0}^{\infty} A_n \cos \frac{n\pi x}{L},$$

and the A_n are the Fourier cosine series coefficients of $f(x)$, so that

$$A_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx, \quad n \geq 1$$

and for $n = 0$,

$$A_0 = \frac{1}{L} \int_0^L f(x) dx.$$

Question 9. Solve Laplace's equation inside a rectangle $0 \leq x \leq L$, $0 \leq y \leq H$, with the following boundary conditions:

(a) $\frac{\partial u}{\partial x}(0, y) = g(y)$, $\frac{\partial u}{\partial x}(L, y) = 0$, $u(x, 0) = 0$, $u(x, H) = 0$

(b) $\frac{\partial u}{\partial x}(0, y) = 0$, $\frac{\partial u}{\partial x}(L, y) = 0$, $u(x, 0) = \begin{cases} 1 & \text{for } 0 < x < L/2, \\ 0 & \text{for } L/2 < x < L \end{cases}$, $\frac{\partial u}{\partial y}(x, H) = 0$

SOLUTION:

(a) We assume a solution of the form $u(x, y) = X(x) \cdot Y(y)$, and substituting this into Laplace's equation we have

$$X''(x) \cdot Y(y) + X(x) \cdot Y''(y) = 0,$$

and

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = \lambda,$$

so we get two ordinary differential equations

$$X''(x) - \lambda X(x) = 0 \quad \text{and} \quad Y''(y) + \lambda Y(y) = 0.$$

We can satisfy the (homogeneous) boundary conditions by requiring that

$$Y(0) = 0, \quad Y(H) = 0 \quad \text{and} \quad X'(L) = 0.$$

Therefore X and Y satisfy the boundary value problems

$$X''(x) - \lambda X(x) = 0, \quad 0 \leq x \leq L \quad Y''(y) + \lambda Y(y) = 0, \quad 0 \leq y \leq H$$

$$X'(L) = 0 \quad Y(0) = 0$$

$$Y(H) = 0.$$

We solve the complete (Dirichlet) boundary value problem for Y first, the eigenvalues are

$$\lambda_n = \left(\frac{n\pi}{H}\right)^2$$

with corresponding eigenfunctions

$$Y_n(y) = \sin \frac{n\pi}{H} y$$

for $n \geq 1$.

The corresponding functions $X(x)$ satisfy the boundary value problem

$$\begin{aligned} X_n'' - \lambda_n X_n &= 0, \quad 0 < x < L \\ X_n'(L) &= 0, \end{aligned}$$

and since the boundary condition at $x = L$ is homogeneous, we choose the following representation of the general solution

$$X_n(x) = A \cosh \frac{n\pi}{H}(L - x) + B \sinh \frac{n\pi}{H}(L - x),$$

and the condition $X_n'(L) = 0$ implies that $B = 0$. Therefore the solution to the boundary value problem for X is

$$X_n(x) = \cosh \frac{n\pi}{H}(L - x), \quad 0 < x < L$$

for $n \geq 1$.

From the superposition principle, the function

$$u(x, y) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi}{H} y \cosh \frac{n\pi}{H}(L - x) \quad (*)$$

satisfies Laplace's equation in the region $0 < x < L$, $0 < y < H$, and satisfies all of the boundary conditions except $\frac{\partial u}{\partial x}(0, y) = g(y)$.

In order to satisfy this condition, we have to use the orthogonality of the eigenfunctions on the interval $0 \leq y \leq H$. Differentiating $(*)$ with respect to x , and setting $x = 0$ we get

$$g(y) = \frac{\partial u}{\partial x}(0, y) = - \sum_{n=1}^{\infty} \frac{n\pi}{H} B_n \sin \frac{n\pi}{H} y \sinh \frac{n\pi}{H} L,$$

multiply both sides of this equation by $\sin \frac{m\pi}{H} y$, and integrate over the interval $0 \leq y \leq H$, to get

$$\int_0^H g(y) \sin \frac{m\pi}{H} y dy = - \sum_{n=1}^{\infty} \frac{n\pi}{H} \sinh \frac{n\pi L}{H} B_n \int_0^H \sin \frac{m\pi}{H} y \sin \frac{n\pi}{H} y dy$$

and using the orthogonality of the eigenfunctions, we have

$$B_m = \frac{-2}{m\pi \sinh \frac{m\pi L}{H}} \int_0^H g(y) \sin \frac{m\pi}{H} y dy \quad (**)$$

for $m \geq 1$.

The solution to Laplace's equation satisfying the given boundary conditions is given by $(*)$, where the coefficients B_m , $m \geq 1$, are given by $(**)$.

(b) Assuming a solution of the form $u(x, y) = X(x) \cdot Y(y)$ and separating variables we get the boundary value problems

$$X''(x) + \lambda X(x) = 0, \quad 0 \leq x \leq L \quad Y''(y) - \lambda Y(y) = 0, \quad 0 \leq y \leq H$$

$$X'(0) = 0 \quad Y'(H) = 0$$

$$X'(L) = 0.$$

We solve the complete (Neumann) boundary value problem first, the eigenvalues are

$$\lambda_n = \left(\frac{n\pi}{L} \right)^2$$

with corresponding eigenfunctions

$$X_n(x) = \cos \frac{n\pi}{L} x$$

for $n \geq 0$.

The corresponding functions $Y_n(y)$ satisfy the boundary value problem

$$\begin{aligned} Y_n'' - \lambda_n Y_n &= 0, \quad 0 < y < H \\ Y_n'(H) &= 0, \end{aligned}$$

and since the boundary condition at $y = H$ is homogeneous, we choose to represent the general solution as follows

$$Y_n(y) = A \cosh \frac{n\pi}{L}(H - y) + B \sinh \frac{n\pi}{L}(H - y),$$

and now the condition $Y_n'(H) = 0$ implies that $B = 0$. Therefore the solution to the boundary value problem for Y is

$$Y_n(y) = \cosh \frac{n\pi}{L}(H - y), \quad 0 < y < H$$

for $n \geq 0$.

From the superposition principle, the function

$$u(x, y) = \sum_{n=0}^{\infty} A_n \cos \frac{n\pi}{L} x \cosh \frac{n\pi}{L}(H - y) \quad (*)$$

satisfies Laplace's equation in the region $0 < x < L$, $0 < y < H$, and satisfies all of the boundary conditions except

$$u(x, 0) = f(x) = \begin{cases} 1 & \text{for } 0 < x < L/2, \\ 0 & \text{for } L/2 < x < L. \end{cases}$$

In order to satisfy this condition, we have to use the orthogonality of the eigenfunctions on the interval $0 \leq x \leq L$. Setting $y = 0$ we get

$$f(x) = u(x, 0) = \sum_{n=0}^{\infty} A_n \cos \frac{n\pi}{L} x \cosh \frac{n\pi H}{L},$$

multiply both sides of this equation by $\cos \frac{m\pi}{L} x$, and integrate over the interval $0 \leq x \leq L$, to get

$$\int_0^L f(x) \cos \frac{m\pi}{L} x dx = \sum_{n=0}^{\infty} \cosh \frac{n\pi H}{L} A_n \int_0^L \cos \frac{m\pi}{L} x \cos \frac{n\pi}{L} x dx$$

so that

$$A_0 = \frac{1}{2} \quad \text{and} \quad A_m = \frac{2 \sin \frac{m\pi}{2}}{m\pi \cosh \frac{m\pi H}{L}} \quad (**)$$

for $m \geq 1$.

From (*) and (**) the solution to Laplace's equation satisfying the given boundary conditions is given by

$$u(x, y) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2 \sin \frac{n\pi}{2}}{n\pi \cosh \frac{n\pi H}{L}} \cos \frac{n\pi}{L} x \cosh \frac{n\pi}{L}(H - y)$$

for $0 < x < L$ and $0 < y < H$.

Question 10. Solve Laplace's equation inside a circular annulus ($0 < a < r < b$)

$$\nabla^2 u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \quad a < r < b, \quad -\pi < \theta < \pi$$

subject to the boundary conditions

$$\frac{\partial u}{\partial r}(a, \theta) = f(\theta), \quad \frac{\partial u}{\partial r}(b, \theta) = g(\theta),$$

for $-\pi < \theta < \pi$.

SOLUTION: Note that we need to include two periodicity conditions to get the right number of boundary conditions:

$$u(r, -\pi) = u(r, \pi) \quad \text{and} \quad \frac{\partial u}{\partial \theta}(r, -\pi) = \frac{\partial u}{\partial \theta}(r, \pi)$$

for $a \leq r \leq b$.

We assume a solution of the form $u(r, \theta) = \phi(\theta) \cdot G(r)$, and substitute this into Laplace's equation to get

$$\frac{r}{G} \frac{d}{dr} \left(r \frac{dG}{dr} \right) = -\frac{1}{\phi} \frac{d^2 \phi}{d\theta^2} = \lambda.$$

We can satisfy the periodicity conditions by requiring that

$$\phi(-\pi) = \phi(\pi) \quad \text{and} \quad \phi'(-\pi) = \phi'(\pi),$$

and we can satisfy the boundary condition $\frac{\partial u}{\partial r}(a, \theta) = 0$ by requiring $G'(a) = 0$. and we have two boundary value problems:

$$\begin{aligned} r \frac{d}{dr} \left(r \frac{dG}{dr} \right) - \lambda G &= 0, \quad a < r < b \quad \phi''(\theta) + \lambda \phi(\theta) = 0, \quad -\pi < \theta < \pi \\ G'(a) &= 0 \quad \phi(-\pi) = \phi(\pi) \\ & \phi'(-\pi) = \phi'(\pi). \end{aligned}$$

We solve the complete (two periodicity conditions) boundary value problem for ϕ first, again we consider three cases.

case (i): If $\lambda = 0$, the general solution to the differential equation $\phi'' = 0$ is $\phi(\theta) = A\theta + B$, with $\phi'(\theta) = A$. The first periodicity condition implies that

$$-A\pi + B = A\pi + B,$$

so that $A = 0$. The solution is now $\phi(\theta) = B$, and the second periodicity condition is also satisfied, the (nontrivial) solution is $\phi(\theta) = B$. In this case, the eigenvalue is $\lambda_0 = 0$ with corresponding eigenfunction $\phi_0(\theta) = 1$.

case (ii): If $\lambda < 0$, then $\lambda = -\mu^2$ where $\mu \neq 0$, and the general solution to the differential equation $\phi'' - \mu^2 \phi = 0$ is

$$\phi(\theta) = A \cosh \mu\theta + B \sinh \mu\theta, \quad \text{with} \quad \phi'(\theta) = \mu A \sinh \mu\theta + \mu B \cosh \mu\theta.$$

The first periodicity condition implies that

$$A \cosh(-\mu\pi) + B \sinh(-\mu\pi) = A \cosh \mu\pi + B \mu \sinh \mu\pi,$$

and since $\cosh \mu\theta$ is an even function and $\sinh \mu\theta$ is an odd function, then

$$2B \sinh \mu\pi = 0,$$

so that $B = 0$. The solution is now $\phi(\theta) = A \cosh \mu\theta$, and the second periodicity condition implies that

$$\mu A \sinh(-\mu\pi) = \mu A \sinh \mu\pi,$$

so that $2\mu A \sinh \mu\pi = 0$, and so $A = 0$. In this case we have only the trivial solution $\phi(\theta) = 0$, $-\pi < \theta < \pi$.

case (iii): If $\lambda > 0$, then $\lambda = \mu^2$ where $\mu \neq 0$, and the general solution to the differential equation $\phi'' + \mu^2 \phi = 0$ is

$$\phi(\theta) = A \cos \mu\theta + B \sin \mu\theta, \quad \text{with} \quad \phi'(\theta) = -\mu A \sin \mu\theta + \mu B \cos \mu\theta.$$

The first periodicity condition implies that

$$A \cos(-\mu\pi) + B \sin(-\mu\pi) = A \cos \mu\pi + B \sin \mu\pi,$$

and since $\cos \mu\theta$ is an even function and $\sin \mu\theta$ is an odd function, then

$$2B \sin \mu\pi = 0.$$

The second periodicity condition implies that

$$-\mu A \sin(-\mu\pi) + \mu B \cos(-\mu\pi) = -\mu A \sin \mu\pi + \mu B \cos \mu\pi,$$

so that

$$2\mu A \sin \mu\pi = 0.$$

There is a nontrivial solution if and only if at least one of A and B is nonzero, and the above implies that $\sin \mu\pi = 0$, that is, $\mu\pi = n\pi$ for some integer n . In this case the eigenvalues are $\lambda_n = n^2$, with corresponding eigenfunctions

$$\phi_n(\theta) = \cos n\theta \quad \text{and} \quad \phi_n(\theta) = \sin n\theta$$

for $n \geq 1$.

If $n \geq 1$, and we assume a solution to the corresponding equation

$$r \frac{d}{dr} \left(r \frac{dG}{dr} \right) - n^2 G = 0$$

of the form $G(r) = r^\alpha$, then

$$r \frac{d}{dr} (\alpha r^\alpha) - n^2 r^\alpha = 0,$$

that is,

$$\alpha^2 r^\alpha - n^2 r^\alpha = 0,$$

so that $\alpha = \pm n$, and we get two linearly independent solutions

$$G_{1n}(r) = r^n \quad \text{and} \quad G_{2n}(r) = \frac{1}{r^n}$$

and the general solution is

$$G_n(r) = Ar^n + \frac{B}{r^n},$$

for $n \geq 1$.

If $n = 0$, the corresponding differential equation for $G(r)$ is

$$r \frac{d}{dr} \left(r \frac{dG}{dr} \right) = 0,$$

and we get two linearly independent solutions

$$G_{10}(r) = 1 \quad \text{and} \quad G_{20}(r) = \log r,$$

and the general solution is

$$G_0(r) = A + B \log r,$$

From the superposition principle, the function

$$u(r, \theta) = A_0 + B_0 \log r + \sum_{n=1}^{\infty} \left[r^n (A_n \cos n\theta + B_n \sin n\theta) + \frac{1}{r^n} (C_n \cos n\theta + D_n \sin n\theta) \right] \quad (\dagger)$$

with

$$\frac{\partial u}{\partial r}(r, \theta) = \frac{B_0}{r} + \sum_{n=1}^{\infty} \left[n r^{n-1} (A_n \cos n\theta + B_n \sin n\theta) - \frac{n}{r^{n+1}} (C_n \cos n\theta + D_n \sin n\theta) \right]$$

satisfies the periodicity conditions and Laplace's equation in the annular region $a \leq r \leq b$, $-\pi \leq \theta \leq \pi$.

We can satisfy the boundary conditions

$$\frac{\partial u}{\partial r}(a, \theta) = f(\theta) \quad \text{and} \quad \frac{\partial u}{\partial r}(b, \theta) = g(\theta)$$

for $-\pi < \theta < \pi$ by requiring that

$$\begin{aligned} f(\theta) &= \frac{B_0}{a} + \sum_{n=1}^{\infty} \left[n a^{n-1} (A_n \cos n\theta + B_n \sin n\theta) - \frac{n}{a^{n+1}} (C_n \cos n\theta + D_n \sin n\theta) \right] \\ g(\theta) &= \frac{B_0}{b} + \sum_{n=1}^{\infty} \left[n b^{n-1} (A_n \cos n\theta + B_n \sin n\theta) - \frac{n}{b^{n+1}} (C_n \cos n\theta + D_n \sin n\theta) \right] \end{aligned} \quad (\dagger\dagger)$$

where the coefficients are determined using the orthogonality of the eigenfunctions

$$\{1, \cos \theta, \sin \theta, \cos 2\theta, \sin 2\theta, \cos 3\theta, \sin 3\theta, \dots\}$$

on the interval $-\pi \leq \theta \leq \pi$.

Multiplying equations $(\dagger\dagger)$ above by the eigenfunction 1 and integrating over the interval $[-\pi, \pi]$, we obtain

$$B_0 = \frac{a}{2\pi} \int_{-\pi}^{\pi} f(\theta) d\theta \quad \text{and} \quad B_0 = \frac{b}{2\pi} \int_{-\pi}^{\pi} g(\theta) d\theta,$$

that is,

$$\int_{-\pi}^{\pi} f(\theta) a d\theta = \int_{-\pi}^{\pi} g(\theta) b d\theta.$$

Note that this also follows from the divergence theorem, since

$$\int_{-\pi}^{\pi} \frac{\partial u}{\partial r}(b, \theta) b d\theta - \int_{-\pi}^{\pi} \frac{\partial u}{\partial r}(a, \theta) a d\theta = \int_{\partial D} \text{grad } u \cdot \mathbf{n} ds = \iint_D \Delta u r dr d\theta = 0,$$

where D is the closed annular region between the circles $r = a$ and $r = b$ and \mathbf{n} is the outward unit normal to the boundary of D .

Multiplying the equations (††) by the appropriate eigenfunctions and integrating over the interval $[-\pi, \pi]$, we get

$$\begin{aligned}\int_{-\pi}^{\pi} f(\theta) \cos n\theta d\theta &= n\pi \left(a^{n-1} A_n - \frac{1}{a^{n+1}} C_n \right) \\ \int_{-\pi}^{\pi} g(\theta) \cos n\theta d\theta &= n\pi \left(b^{n-1} A_n - \frac{1}{b^{n+1}} C_n \right) \\ \int_{-\pi}^{\pi} f(\theta) \sin n\theta d\theta &= n\pi \left(a^{n-1} B_n - \frac{1}{a^{n+1}} D_n \right) \\ \int_{-\pi}^{\pi} g(\theta) \sin n\theta d\theta &= n\pi \left(b^{n-1} B_n - \frac{1}{b^{n+1}} D_n \right),\end{aligned}$$

and solving for A_n , B_n , C_n , and D_n , we have

$$\begin{aligned}A_n &= \frac{1}{n\pi(b^{2n} - a^{2n})} \left[b^n \int_{-\pi}^{\pi} g(\theta) \cos n\theta b d\theta - a^n \int_{-\pi}^{\pi} f(\theta) \cos n\theta a d\theta \right] \\ B_n &= \frac{1}{n\pi(b^{2n} - a^{2n})} \left[b^n \int_{-\pi}^{\pi} g(\theta) \sin n\theta b d\theta - a^n \int_{-\pi}^{\pi} f(\theta) \sin n\theta a d\theta \right] \\ C_n &= \frac{a^n b^n}{n\pi(b^{2n} - a^{2n})} \left[a^n \int_{-\pi}^{\pi} g(\theta) \cos n\theta b d\theta - b^n \int_{-\pi}^{\pi} f(\theta) \cos n\theta a d\theta \right] \\ D_n &= \frac{a^n b^n}{n\pi(b^{2n} - a^{2n})} \left[a^n \int_{-\pi}^{\pi} g(\theta) \sin n\theta b d\theta - b^n \int_{-\pi}^{\pi} f(\theta) \sin n\theta a d\theta \right]\end{aligned}$$

for $n \geq 1$.

The solution to the Neumann problem for Laplace's equation in the annulus $a < r < b$ is given by (†), where the coefficients A_n , B_n , C_n , and D_n for $n \geq 1$ are given above, while

$$B_0 = \frac{a}{2\pi} \int_{-\pi}^{\pi} f(\theta) d\theta = \frac{b}{2\pi} \int_{-\pi}^{\pi} g(\theta) d\theta,$$

and A_0 is an arbitrary constant.