
 

Solutions to Problem Set1

Math 300 - Spring-Summer 2018

Question 1.

For the following functions, sketch the Fourier series of f(x) on the interval −L ≤ x ≤ L, and determine the
Fourier coefficients:

(a) f(x) =

{

1 for |x| < L/2

0 for |x| > L/2

(b) f(x) =

{

1 if 0 < x < L

0 if − L < x < 0

Solution:

(a) From Dirichlet’s theorem the Fourier series of f(x) converges to

1

2

[

f(x+) + f(x−)
]

if −L ≤ x ≤ L, and the graph of the Fourier series of f(x) on the interval −L ≤ x ≤ L is shown below.
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Since f(x) is an even piecewise smooth function on the interval [−L,L], it has a Fourier series repre-
sentation of the form

f(x) ∼ a0 +

∞
∑

n=1

an cos
nπx

L

where

a0 =
1

L

∫ L

0

f(x) dx =
1

L

∫ L

2

0

1 dx =
1

2
,

and

an =
2

L

∫ L

0

f(x) cos
nπx

L
dx =

2

L

∫ L

2

0

cos
nπx

L
dx =

2

nπ
sin

nπx

L

∣

∣

∣

∣

L

2

0

=
2

nπ
sin

nπ

2

for n ≥ 1.

(b) Again, from Dirichlet’s theorem the Fourier series of f(x) converges to

1

2

[

f(x+) + f(x−)
]

if −L ≤ x ≤ L, and the graph of the Fourier series of f(x) on the interval −L ≤ x ≤ L is shown below.
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Since f(x) −
1

2
is an odd piecewise smooth function on the interval [−L,L], it has a Fourier series

representation of the form

f(x)−
1

2
∼

∞
∑

n=1

bn sin
nπx

L

where

bn =
2

L

∫ L

0

(

f(x)−
1

2

)

sin
nπx

L
dx =

1

L

∫ L

0

sin
nπx

L
dx

= −
1

nπ
cos

nπx

L

∣

∣

∣

∣

L

0

= −
1

nπ
(cosnπ − 1)

=
1

nπ
[1− (−1)n]

for n ≥ 1.

Question 2.

Show that the Fourier series operation is linear: that is, show that the Fourier series of

c1f(x) + c2g(x)

is the sum of c1 times the Fourier series of f(x) and c2 times the Fourier series of g(x).

Solution: Suppose that the Fourier series of f and g are given by

f(x) ∼ A0 +

∞
∑

n=1

(

An cos
nπx

L
+Bn sin

nπx

L

)

and g(x) ∼ C0 +

∞
∑

n=1

(

Cn cos
nπx

L
+Dn sin

nπx

L

)

where

A0 =
1

2L

∫ L

−L

f(x) dx, An =
1

L

∫ L

−L

f(x) cos
nπx

L
dx, Bn =

1

L

∫ L

−L

f(x) sin
nπx

L
dx

for n ≥ 1, and

C0 =
1

2L

∫ L

−L

g(x) dx, Cn =
1

L

∫ L

−L

g(x) cos
nπx

L
dx, Dn =

1

L

∫ L

−L

g(x) sin
nπx

L
dx

for n ≥ 1.



If c1 and c2 are scalars, and the Fourier series of c1f + c2g is

c1f(x) + c2g(x) ∼ E0 +

∞
∑

n=1

(

En cos
nπx

L
+ Fn sin

nπx

L

)

,

then

E0 =
1

2L

∫ L

−L

(c1f(x) + c2g(x)) dx =
c1
2L

∫ L

−L

f(x) dx+
c2
2L

∫ L

−L

g(x) dx = c1A0 + c2C0.

Also,

En =
1

L

∫ L

−L

(c1f(x) + c2g(x)) cos
nπx

L
dx

=
c1
L

∫ L

−L

f(x) cos
nπx

L
dx+

c2
L

∫ L

−L

g(x) cos
nπx

L
dx

= c1An + c2Cn

for n ≥ 1. Similarly,

Fn =
1

L

∫ L

−L

(c1f(x) + c2g(x)) sin
nπx

L
dx

=
c1
L

∫ L

−L

f(x) sin
nπx

L
dx+

c2
L

∫ L

−L

g(x) sin
nπx

L
dx

= c1Bn + c2Dn

for n ≥ 1. Therefore the Fourier series for c1f + c2g is

c1f(x) + c2g(x) ∼ c1A0 + c2C0 +

∞
∑

n=1

(

(c1An + c2Cn) cos
nπx

L
+ (c1Bn + c2Dn) sin

nπx

L

)

= c1

[

A0 +
∞
∑

n=1

(

An cos
nπx

L
+Bn sin

nπx

L

)

]

+ c2

[

C0 +
∞
∑

n=1

(

Cn cos
nπx

L
+Dn sin

nπx

L

)

]

∼ c1f(x) + c2g(x).

Question 3.

For the following functions, sketch f(x), the Fourier series of f(x), the Fourier sine series of f(x), and the
Fourier cosine series of f(x), and determine the Fourier coefficients:

(a) f(x) =











x −L < x < 0

1 + x 0 < x < L
(b) f(x) =











2, −L < x < 0

e−x 0 < x < L

Solution:

(a) Fourier Series : The graphs of f(x) and the Fourier series of f(x) are shown below.
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The Fourier series representation of f(x) is

f(x) ∼ a0 +

∞
∑

n=1

(

an cos
nπx

L
+ bn sin

nπx

L

)

,

where

a0 =
1

2L

∫ L

−L

f(x) dx =
1

2L

∫ L

−L

x dx+
1

2L

∫ L

0

1 dx =
1

2L
L =

1

2
,

since the function x is an odd function on [−L,L].

For n ≥ 1,

an =
1

L

∫ L

−L

f(x) cos nπx

L
dx =

1

L

∫ L

−L

x cos nπx

L
dx+

1

L

∫ L

0

cos nπx

L
dx

=
1

nπ
sin nπx

L

∣

∣

∣

∣

L

0

= 0,

since x cos nπx

L
is an odd function on [−L,L], and

bn =
1

L

∫ L

−L

f(x) sin nπx

L
dx =

1

L

∫ L

−L

x sin nπx

L
dx+

1

L

∫ L

0

sin nπx

L
dx

=
2

L

∫ L

0

x sin nπx

L
dx+

1

L

∫ L

0

sin nπx

L
dx

=
2

L

[

−
L

nπ
x cos nπx

L

∣

∣

∣

∣

L

0

+
L

nπ

∫ L

0

cos nπx

L
dx

]

+
1

L

(

−
L

nπ
cos nπx

L

) ∣

∣

∣

∣

L

0

=
1

nπ
[1− (−1)n]−

2L(−1)n

nπ
.

Fourier Sine Series : The graphs of the odd extension of f(x) to the interval [−L,L] and the Fourier
sine series of f(x) are shown below.

Sine Series
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y
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y
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The Fourier sine series representation of f(x) is

f(x) ∼

∞
∑

n=1

bn sin
nπx

L
,

where

bn =
2

L

∫ L

0

f(x) sin nπx

L
dx =

2

L

∫ L

0

(1 + x) sin nπx

L
dx

=
2

L

[

−
L

nπ
(1 + x) cos nπx

L

∣

∣

∣

∣

L

0

+
L

nπ

∫ L

0

cos nπx

L
dx

]

=
2

nπ
[1− (−1)n]−

2L(−1)n

nπ
.



Fourier Cosine Series : The graphs of the even extension of f(x) to the interval [−L,L] and the Fourier
cosine series of f(x) are shown below.

Even Extension Cosine Series

L 3L−3L −L

y

x
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0−L L

y

x

1

0

The Fourier cosine series representation of f(x) is

f(x) ∼ a0 +

∞
∑

n=1

an cos
nπx

L
,

where

a0 =
1

L

∫ L

0

f(x) dx =
1

L

∫ L

0

(1 + x) dx =
1

L

[

x

∣

∣

∣

∣

L

0

+
x2

2

∣

∣

∣

∣

L

0

]

=

(

1 +
L

2

)

,

and for n ≥ 1,

an =
2

L

∫ L

0

f(x) cos nπx

L
dx =

2

L

∫ L

0

(1 + x) cos nπx

L
dx

=
2

L

[

L

nπ
(1 + x) sin nπx

L

∣

∣

∣

∣

L

0

−
L

nπ

∫ L

0

sin nπx

L
dx

]

=
2L

n2π2
cos nπx

L

∣

∣

∣

∣

L

0

=
2L

n2π2
[(−1)n − 1] .

(b) Fourier Series : The graphs of f(x) and the Fourier series of f(x) are shown below.

3LxL0−L

y

1

2

x−L0−L

y

1

2

−3L

The Fourier series representation of f(x) is

f(x) ∼ a0 +

∞
∑

n=1

(

an cos
nπx

L
+ bn sin

nπx

L

)

,

where

a0 =
1

2L

∫ L

−L

f(x) dx =
1

2L

∫ 0

−L

2 dx+
1

2L

∫ L

0

e−x dx =
1

2L

(

2L+ 1− e−L
)

.



Since
∫

eax cos bx dx =
eax

a2 + b2
(b sin bx+ a cos bx) ,

then

an =
1

L

∫ L

−L

f(x) cos nπx

L
dx =

1

L

∫ 0

−L

2 cos nπx

L
dx+

1

L

∫ L

0

e−x cos nπx

L
dx

=
2

nπ
sin nπx

L

∣

∣

∣

∣

0

−L

+
nπ

L2 + n2π2
e−x sin nπx

L

∣

∣

∣

∣

L

0

−
L

L2 + n2π2
e−x cos nπx

L

∣

∣

∣

∣

L

0

=
L

L2 + n2π2

[

1− e−L(−1)n
]

for n ≥ 1.

Since
∫

eax sin bx dx =
eax

a2 + b2
(a sin bx− b cos bx) ,

then

bn =
1

L

∫ L

−L

f(x) sin nπx

L
dx =

1

L

∫ 0

−L

2 sin nπx

L
dx+

1

L

∫ L

0

e−x sin nπx

L
dx

= −
2

nπ
cos nπx

L

∣

∣

∣

∣

0

−L

−
L

L2 + n2π2
e−x sin nπx

L

∣

∣

∣

∣

L

0

−
nπ

L2 + n2π2
e−x cos nπx

L

∣

∣

∣

∣

L

0

=
nπ

L2 + n2π2

[

1− e−L(−1)n
]

for n ≥ 1.

Fourier Sine Series : The graphs of the odd extension of f(x) to the interval [−L,L] and the Fourier
sine series of f(x) are shown below.
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The Fourier sine series representation of f(x) is

f(x) ∼

∞
∑

n=1

bn sin
nπx

L
,

where

bn =
2

L

∫ L

0

f(x) sin nπx

L
dx =

2

L

∫ L

0

e−x sin nπx

L
dx

= −
2L

L2 + n2π2
e−x sin nπx

L

∣

∣

∣

∣

L

0

−
2nπ

L2 + n2π2
e−x cos nπx

L

∣

∣

∣

∣

L

0

=
2nπ

L2 + n2π2

[

1− e−L(−1)n
]

for n ≥ 1.



Fourier Cosine Series : The graphs of the even extension of f(x) to the interval [−L,L] and the Fourier
cosine series of f(x) are shown below.
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The Fourier cosine series representation of f(x) is

f(x) ∼ a0 +

∞
∑

n=1

an cos
nπx

L
,

where

a0 =
1

L

∫ L

0

f(x) dx =
1

L

∫ L

0

e−x dx = −
1

L
e−x

∣

∣

∣

∣

L

0

=
1

L

(

1− e−L
)

.

Since
∫

eax cos bx dx =
eax

a2 + b2
(b sin bx+ a cos bx) ,

then

an =
2

L

∫ L

0

f(x) cos nπx

L
dx =

2

L

∫ L

0

e−x cos nπx

L
dx

=
2nπ

L2 + n2π2
e−x sin nπx

L

∣

∣

∣

∣

L

0

−
2L

L2 + n2π2
e−x cos nπx

L

∣

∣

∣

∣

L

0

=
2L

L2 + n2π2

[

1− e−L(−1)n
]

for n ≥ 1.

Question 4.

Show that ex is the sum of an even function and an odd function.

Solution: We can write

ex =
ex + e−x

2
+

ex − e−x

2
= coshx+ sinhx,

and coshx is an even function while sinhx is an odd function.

In general, if f(x) is an arbitrary function, then we can write

f(x) = feven(x) + fodd(x)

where

feven(x) =
f(x) + f(−x)

2

is even, and

fodd(x) =
f(x)− f(−x)

2

is odd.



Question 5.

Find all solutions to the boundary value problem

φ′′(x) + φ(x) = 0, 0 ≤ x ≤ 1

φ(0) = 0

φ(1) = 0.

Solution: The general solution to the differential equation is

φ(x) = A cosx+B sinx, 0 ≤ x ≤ 1.

Appying the first boundary condition,
φ(0) = A = 0,

the solution becomes
φ(x) = B sinx, 0 ≤ x ≤ 1.

Applying the second boundary condition,

φ(1) = B sin 1 = 0,

and since sin 1 6= 0, then B = 0, and the only solution to the boundary value problem is the trivial solution

φ(x) = 0

for 0 ≤ x ≤ 1.

Question 6.

Consider the integral

∫ 1

0

dx

1 + x2
.

(a) Evaluate the integral explicitly.

(b) Use the Taylor series of
1

1 + x2
(a geometric series) to obtain an infinite series for the integral.

(c) Equate part (a) to part (b) in order to derive a formula for π.

Solution:

(a) Since
d

dx

(

tan−1 x
)

=
1

1 + x2
,

we have
∫ 1

0

1

1 + x2
dx = tan−1 x

∣

∣

∣

∣

1

0

= tan−1 1− tan−1 0 =
π

4
.

(b) Recall that the geometric series

1

1 + t2
= 1− t2 + t4 − t6 + · · · ,

that is,

1

1 + t2
=

∞
∑

n=0

(−1)nt2n

converges for all −1 < t < 1.



Integrating from 0 to x, where |x| < 1, we get

∫ x

0

1

1 + t2
dt =

∫ x

0

(

∞
∑

n=0

(−1)nt2n

)

dt

=

∞
∑

n=0

(−1)n
∫ x

0

t2n dt

=

∞
∑

n=0

(−1)n
t2n+1

2n+ 1

∣

∣

∣

∣

x

0

=

∞
∑

n=0

(−1)n

2n+ 1
x2n+1,

and therefore

tan−1 x =

∞
∑

n=0

(−1)n

2n+ 1
x2n+1 = x−

1

3
x3 +

1

5
x5 −

1

7
x7 + · · ·

for −1 < x < 1, and this is Gregory’s series for tan−1 x, discovered by James Gregory about 1670.

Letting x → 1−, then a theorem of Abel tells us that

π

4
=

∫ 1

0

1

1 + t2
dt = lim

x→1−

∫ x

0

1

1 + t2
dt = lim

x→1−

∞
∑

n=0

(−1)n

2n+ 1
x2n+1

=
∞
∑

n=0

(−1)n

2n+ 1
lim

x→1−
x2n+1 =

∞
∑

n=0

(−1)n

2n+ 1
,

so that
π

4
= 1−

1

3
+

1

5
−

1

7
+

1

9
−

1

11
+ · · · ,

this is Leibniz’s formula for
π

4
, discovered by Leibniz in 1673.

(c) From part (b), we have

π = 4

∞
∑

n=0

(−1)n

2n+ 1
.

The convergence is very slow however.

Another proof of Leibniz’s formula which doesn’t require integrating an infinite series term-by-term is
given below.

1−
1

3
+

1

5
−

1

7
+ · · ·+

(−1)n−1

2n− 1
=

∫ 1

0

(

1− x2 + x4 − x6 + · · ·+ (−1)n−1x2n−2
)

dx

=

∫ 1

0

1− x2n

1 + x2
dx

=

∫ 1

0

1

1 + x2
dx−

∫ 1

0

x2n

1 + x2
dx

and therefore,

∣

∣

∣

∣

π

4
−

(

1−
1

3
+

1

5
−

1

7
+ · · ·+

(−1)n−1

2n− 1

)∣

∣

∣

∣

=

∫ 1

0

x2n

1 + x2
dx ≤

∫ 1

0

x2n dx =
1

2n+ 1
−→ 0

as n → ∞.



Question 7.

For continuous functions,

(a) Under what conditions does f(x) equal its Fourier series for all x ∈ [−L,L] ?

(b) Under what conditions does f(x) equal its Fourier sine series for all x ∈ [0, L] ?

(c) Under what conditions does f(x) equal its Fourier cosine series for all x ∈ [0, L] ?

Hint: What does the Fourier series converge to at the end points of the interval?

(a) From Dirichlet’s theorem, we know that for any x0 with −L < x0 < L, the Fourier series of f converges
to f(x0) since f is continuous at x0.

We also know that at the endpoints x = −L and x = L, the Fourier series converges to

1

2

[

f(L−) + f(−L+)
]

,

and if f is continuous at the endpoints, that is, continuous from the left at x = L and continuous from
the right at x = −L, then the Fourier series converges to

f(L) + f(−L)

2

at x = L and at x = −L, so that the Fourier series converges to f(x) for all x ∈ [−L,L] if and only if
f(L) = f(−L).

(b) Again, from Dirichlet’s theorem, if 0 < x0 < L, then the Fourier sine series of f converges to f(x0)
since f is continuous at x0.

If fodd is the odd extension of f to [−L,L], then at x = 0, the Fourier sine series of f converges to

1

2

[

fodd(0
−) + fodd(0

+)
]

=
1

2
[−f(0) + f(0)] = 0,

and the Fourier sine series converges to f at x = 0 if and only if f(0) = 0.

If fodd is the odd extension of f to [−L,L], then at x = L, the Fourier sine series of f converges to

1

2

[

fodd(L
−) + fodd(−L+)

]

=
1

2
[fodd(L) + fodd(−L)] =

1

2
[f(L)− f(L)] = 0,

and the Fourier sine series converges to f at x = L if and only if f(L) = 0.

(c) From Dirichlet’s theorem, if 0, x0 < L, then the Fourier cosine series of f converges to f(x0) since f is
continuous at x0.

If feven is the even extension of f to [−L,L], then at x = 0, the Fourier cosine series of f converges to

1

2

[

feven(0
−) + feven(0

+)
]

=
1

2
[f(0) + f(0)] = f(0),

and the Fourier cosine series of f converges to f at x = 0 if and only if f is continuous from the right
at x = 0.

If feven is the even extension of f to [−L,L], then at x = L, the Fourier cosine series of f converges to

1

2

[

feven(L
−) + feven(−L+)

]

=
1

2
[feven(L) + feven(−L)]

1

2
[f(L) + f(L)] = f(L),

and the Fourier cosine series of f converges to f at x = L if and only if f is continuous from the left
at x = L.



Question 8.

Consider the boundary value – initial value problem

∂u

∂t
= k

∂2u

∂x2
, 0 < x < L, t > 0

∂u

∂x
(0, t) = 0, t > 0;

∂u

∂x
(L, t) = 0, t > 0; u(x, 0) = f(x), 0 < x < L.

Solve this problem by looking for a solution as a Fourier cosine series. Assume that u and
∂u

∂x
are continuous

and
∂2u

∂x2
and

∂u

∂t
are piecewise smooth. Justify all differentiations of infinite series.

Solution: We assume a solution of the form

u(x, t) =

∞
∑

n=0

an(t) cos
nπx

L

and assuming all derivatives are continuous, we have

∂2u

∂x2
= −

∞
∑

n=0

an(t)
(nπ

L

)2

cos
nπx

L

and since u(x, t) satisfies the heat equation,

∂u

∂t
= k

∂2u

∂x2
,

then we have
∞
∑

n=0

a′n(t) cos
nπx

L
= −k

∞
∑

n=0

an(t)
(nπ

L

)2

cos
nπx

L
.

Collecting terms that multiply cos nπx

L
for n ≥ 0 for n ≥ 1, and using the fact that these trigonometric

functions are linearly independent (they are orthogonal on the interval [0, L]), then we get

a′n(t) = −kan(t)
(nπ

L

)2

,

and we can solve these first order linear ordinary differential equations for an(t) to get

an(t) = Ane
−(nπ

L )
2

kt,

and the solution u(x, t) becomes

u(x, t) =

∞
∑

n=0

Ane
−(nπ

L )
2

kt cos
nπx

L
.

Differentiating this with respect to x, we get

∂u

∂x
(x, t) = −

∞
∑

n=0

Ane
−(nπ

L )
2

kt

(nπ

L

)

sin
nπx

L
,

and setting x = 0, we get

0 =
∂u

∂x
(0, t),

and the first boundary condition is satisfied.



The solution is now

u(x, t) =

∞
∑

n=0

Ane
−(nπ

L )
2

kt cos
nπx

L
,

and we note that the second boundary condition
∂u

∂x
(L, t) = 0 is also satisfied, so we only need to find the

constants An to satisfy the initial condition u(x, 0) = f(x).

Setting t = 0 in the above expression for u(x, t), we have

f(x) = u(x, 0) =

∞
∑

n=0

An cos
nπx

L
,

and the An are the Fourier cosine series coefficients of f(x), so that

An =
2

L

∫ L

0

f(x) cos
nπx

L
dx, n ≥ 1

and for n = 0,

A0 =
1

L

∫ L

0

f(x) dx.

Question 9. Solve Laplace’s equation inside a rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ H, with the following boundary
conditions:

(a)
∂u

∂x
(0, y) = g(y),

∂u

∂x
(L, y) = 0, u(x, 0) = 0, u(x,H) = 0

(b)
∂u

∂x
(0, y) = 0,

∂u

∂x
(L, y) = 0, u(x, 0) =

{

1 for 0 < x < L/2,

0 for L/2 < x < L

∂u

∂y
(x,H) = 0

Solution:

(a) We assume a solution of the form u(x, y) = X(x) · Y (y), and substituting this into Laplace’s equation
we have

X ′′(x) · Y (y) +X(x) · Y ′′(y) = 0,

and
X ′′(x)

X(x)
= −

Y ′′(y)

Y (y)
= λ,

so we get two ordinary differential equations

X ′′(x)− λX(x) = 0 and Y ′′(y) + λY (y) = 0.

We can satisfy the (homogeneous) boundary conditions by requiring that

Y (0) = 0, Y (H) = 0 and X ′(L) = 0.

Therefore X and Y satisfy the boundary value problems

X ′′(x)− λX(x) = 0, 0 ≤ x ≤ L Y ′′(y) + λY (y) = 0, 0 ≤ y ≤ H

X ′(L) = 0 Y (0) = 0

Y (H) = 0.

We solve the complete (Dirichlet) boundary value problem for Y first, the eigenvalues are

λn =
(nπ

H

)2

with corresponding eigenfunctions
Yn(y) = sin nπ

H
y

for n ≥ 1.



The corresponding functions X(x) satisfy the boundary value problem

X ′′

n − λnXn = 0, 0 < x < L

X ′

n(L) = 0,

and since the boundary condition at x = L is homogeneous, we choose the following representation of
the general solution

Xn(x) = A cosh nπ

H
(L− x) +B sinh nπ

H
(L− x),

and the condition X ′

n(L) = 0 implies that B = 0. Therefore the solution to the boundary value problem
for X is

Xn(x) = cosh nπ

H
(L− x), 0 < x < L

for n ≥ 1.

From the superposition principle, the function

u(x, y) =
∞
∑

n=1

Bn sin
nπ

H
y cosh nπ

H
(L− x) (∗)

satisfies Laplace’s equation in the region 0 < x < L, 0 < y < H, and satisfies all of the boundary

conditions except
∂u

∂x
(0, y) = g(y).

In order to satisfy this condition, we have to use the orthogonality of the eigenfunctions on the interval
0 ≤ y ≤ H. Differentiating (∗) with respect to x, and setting x = 0 we get

g(y) =
∂u

∂x
(0, y) = −

∞
∑

n=1

nπ

H
Bn sin

nπ

H
y sinh nπ

H
L,

multiply both sides of this equation by sin mπ

H
y, and integrate over the interval 0 ≤ y ≤ H, to get

∫ H

0

g(y) sin mπ

H
y dy = −

∞
∑

n=1

nπ

H
sinh nπL

H
Bn

∫ H

0

sin mπ

H
y sin nπ

H
y dy

and using the orthogonality of the eigenfunctions, we have

Bm =
−2

mπ sinh mπL

H

∫ H

0

g(y) sin mπ

H
y dy (∗∗)

for m ≥ 1.

The solution to Laplace’s equation satisfying the given boundary conditions is given by (∗), where the
coefficients Bm, m ≥ 1, are given by (∗∗).

(b) Assuming a solution of the form u(x, y) = X(x) · Y (y) and separating variables we get the boundary
value problems

X ′′(x) + λX(x) = 0, 0 ≤ x ≤ L Y ′′(y)− λY (y) = 0, 0 ≤ y ≤ H

X ′(0) = 0 Y ′(H) = 0

X ′(L) = 0.

We solve the complete (Neumann) boundary value problem first, the eigenvalues are

λn =
(nπ

L

)2

with corresponding eigenfunctions
Xn(x) = cos nπ

L
x

for n ≥ 0.



The corresponding functions Yn(y) satisfy the boundary value problem

Y ′′

n − λnYn = 0, 0 < y < H

Y ′

n(H) = 0,

and since the boundary condition at y = H is homogeneous, we choose to represent the general solution
as follows

Yn(y) = A cosh nπ

L
(H − y) +B sinh nπ

L
(H − y),

and now the condition Y ′

n(H) = 0 implies that B = 0. Therefore the solution to the boundary value
problem for Y is

Yn(y) = cosh nπ

L
(H − y), 0 < y < H

for n ≥ 0.

From the superposition principle, the function

u(x, y) =
∞
∑

n=0

An cos
nπ

L
x cosh nπ

L
(H − y) (∗)

satisfies Laplace’s equation in the region 0 < x < L, 0 < y < H, and satisfies all of the boundary
conditions except

u(x, 0) = f(x) =

{

1 for 0 < x < L/2,

0 for L/2 < x < L.

In order to satisfy this condition, we have to use the orthogonality of the eigenfunctions on the interval
0 ≤ x ≤ L. Setting y = 0 we get

f(x) = u(x, 0) =

∞
∑

n=0

An cos
nπ

L
x cosh nπH

L
,

multiply both sides of this equation by cos mπ

L
x, and integrate over the interval 0 ≤ x ≤ L, to get

∫ L

0

f(x) cos mπ

L
x dx =

∞
∑

n=0

cosh nπH

L
An

∫ L

0

cos mπ

L
x cos nπ

L
x dx

so that

A0 =
1

2
and Am =

2 sin mπ

2

mπ cosh mπH

L

(∗∗)

for m ≥ 1.

From (∗) and (∗∗) the solution to Laplace’s equation satisfying the given boundary conditions is given
by

u(x, y) =
1

2
+

∞
∑

n=1

2 sin nπ

2

nπ cosh nπH

L

cos nπ

L
x cosh nπ

L
(H − y)

for 0 < x < L and 0 < y < H.



Question 10. Solve Laplace’s equation inside a circular annulus (0 < a < r < b)

∇2u =
1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2
∂2u

∂θ2
= 0, a < r < b, −π < θ < π

subject to the boundary conditions

∂u

∂r
(a, θ) = f(θ),

∂u

∂r
(b, θ) = g(θ),

for −π < θ < π.

Solution: Note that we need to include two periodicity conditions to get the right number of boundary
conditions:

u(r,−π) = u(r, π) and
∂u

∂θ
(r,−π) =

∂u

∂θ
(r, π)

for a ≤ r ≤ b.

We assume a solution of the form u(r, θ) = φ(θ) ·G(r), and substitute this into Laplace’s equation to get

r

G

d

dr

(

r
dG

dr

)

= −
1

φ

d2φ

dθ2
= λ.

We can satisfy the periodicity conditions by requiring that

φ(−π) = φ(π) and φ′(−π) = φ′(π),

and we can satisfy the boundary condition
∂u

∂r
(a, θ) = 0 by requiring G′(a) = 0. and we have two boundary

value problems:

r
d

dr

(

r
dG

dr

)

− λG = 0, a < r < b φ′′(θ) + λφ(θ) = 0, −π < θ < π

G′(a) = 0 φ(−π) = φ(π)

φ′(−π) = φ′(π).

We solve the complete (two periodicity conditions) boundary value problem for φ first, again we consider
three cases.

case (i): If λ = 0, the general solution to the differential equation φ′′ = 0 is φ(θ) = Aθ +B, with φ′(θ) = A.
The first periodicity condition implies that

−Aπ +B = Aπ +B,

so that A = 0. The solution is now φ(θ) = B, and the second periodicity condition is also satisfied, the
(nontrivial) solution is φ(θ) = B. In this case, the eigenvalue is λ0 = 0 with corresponding eigenfunction
φ0(θ) = 1.

case (ii): If λ < 0, then λ = −µ2 where µ 6= 0, and the general solution to the differential equation

φ′′ − µ2φ = 0 is

φ(θ) = A coshµθ +B sinhµθ, with φ′(θ) = µA sinhµθ + µB coshµθ.

The first periodicity condition implies that

A cosh(−µπ) +B sinh(−µπ) = A coshµπ +Bµ sinhµπ,

and since coshµθ is an even function and sinhµθ is an odd function, then

2B sinhµπ = 0,



so that B = 0. The solution is now φ(θ) = A coshµθ, and the second periodicity condition implies that

µA sinh(−µπ) = µA sinhµπ,

so that 2µA sinhµπ = 0, and so A = 0. In this case we have only the trivial solution φ(θ) = 0, −π < θ < π.

case (iii): If λ > 0, then λ = µ2 where µ 6= 0, and the general solution to the differential equation φ′′+µ2φ = 0
is

φ(θ) = A cosµθ +B sinµθ, with φ′(θ) = −µA sinµθ + µB cosµθ.

The first periodicity condition implies that

A cos(−µπ) +B sin(−µπ) = A cosµπ +Bµ sinµπ,

and since cosµθ is an even function and sinµθ is an odd function, then

2B sinµπ = 0.

The second periodicity condition implies that

−µA sin(−µπ) + µB cos(−µπ) = −µA sinµπ + µB cosµπ,

so that
2µA sinµπ = 0.

There is a nontrivial solution if and only if at least one of A and B is nonzero, and the above implies that
sinµπ = 0, that is, µπ = nπ for some integer n. In this case the eigenvalues are λn = n2, with corresponding
eigenfunctions

φn(θ) = cosnθ and φn(θ) = sinnθ

for n ≥ 1.

If n ≥ 1, and we assume a solution to the corresponding equation

r
d

dr

(

r
dG

dr

)

− n2G = 0

of the form G(r) = rα, then

r
d

dr
(αrα)− n2rα = 0,

that is,
α2rα − n2rα = 0,

so that α = ±n, and we get two linearly independent solutions

G1n(r) = rn and G2n(r) =
1

rn

and the general solution is

Gn(r) = Arn +
B

rn
,

for n ≥ 1.



If n = 0, the corresponding differential equation for G(r) is

r
d

dr

(

r
dG

dr

)

= 0,

and we get two linearly independent solutions

G10(r) = 1 and G20(r) = log r,

and the general solution is
G0(r) = A+B log r,

From the superposition principle, the function

u(r, θ) = A0 +B0 log r +
∞
∑

n=1

[

rn(An cosnθ +Bn sinnθ) +
1

rn
(Cn cosnθ +Dn sinnθ)

]

(†)

with

∂u

∂r
(r, θ) =

B0

r
+

∞
∑

n=1

[

nrn−1(An cosnθ +Bn sinnθ)−
n

rn+1
(Cn cosnθ +Dn sinnθ)

]

satisfies the periodicity conditions and Laplace’s equation in the annular region a ≤ r ≤ b, −π ≤ θ ≤ π.

We can satisfy the boundary conditions

∂u

∂r
(a, θ) = f(θ) and

∂u

∂r
(b, θ) = g(θ)

for ;−π < θ < π by requiring that

f(θ) =
B0

a
+

∞
∑

n=1

[

nan−1(An cosnθ +Bn sinnθ)−
n

an+1
(Cn cosnθ +Dn sinnθ)

]

g(θ) =
B0

b
+

∞
∑

n=1

[

nbn−1(An cosnθ +Bn sinnθ)−
n

bn+1
(Cn cosnθ +Dn sinnθ)

]

(††)

where the coefficients are determined using the orthogonality of the eigenfunctions

{ 1, cos θ, sin θ, cos 2θ, sin 2θ, cos 3θ, sin 3θ, · · · }

on the interval −π ≤ θ ≤ π.

Multiplying equations (††) above by the eigenfunction 1 and integrating over the interval [−π, π], we obtain

B0 =
a

2π

∫ π

−π

f(θ) dθ and B0 =
b

2π

∫ π

−π

g(θ) dθ,

that is,
∫ π

−π

f(θ) adθ =

∫ π

−π

g(θ) bdθ.

Note that this also follows from the divergence theorem, since

∫ π

−π

∂u

∂r
(b, θ) b dθ −

∫ π

−π

∂u

∂r
(a, θ) a dθ =

∫

∂D

grad u · n ds =

∫∫

D

∆u rdrdθ = 0,

where D is the closed annular region between the circles r = a and r = b and n is the outward unit normal
to the boundary of D.



Multiplying the equations (††) by the appropriate eigenfunctions and integrating over the interval [−π, π],
we get

∫ π

−π

f(θ) cosnθ dθ = nπ

(

an−1An −
1

an+1
Cn

)

∫ π

−π

g(θ) cosnθ dθ = nπ

(

bn−1An −
1

bn+1
Cn

)

∫ π

−π

f(θ) sinnθ dθ = nπ

(

an−1Bn −
1

an+1
Dn

)

∫ π

−π

g(θ) sinnθ dθ = nπ

(

bn−1Bn −
1

bn+1
Dn

)

,

and solving for An, Bn, Cn, and Dn, we have

An =
1

nπ(b2n − a2n)

[

bn
∫ π

−π

g(θ) cosnθ b dθ − an
∫ π

−π

f(θ) cosnθ a dθ

]

Bn =
1

nπ(b2n − a2n)

[

bn
∫ π

−π

g(θ) sinnθ b dθ − an
∫ π

−π

f(θ) sinnθ a dθ

]

Cn =
anbn

nπ(b2n − a2n)

[

an
∫ π

−π

g(θ) cosnθ b dθ − bn
∫ π

−π

f(θ) cosnθ a dθ

]

Dn =
anbn

nπ(b2n − a2n)

[

an
∫ π

−π

g(θ) sinnθ b dθ − bn
∫ π

−π

f(θ) sinnθ a dθ

]

for n ≥ 1.

The solution to the Neumann problem for Laplace’s equation in the annulus a < r < b is given by (†), where
the coefficients An, Bn, Cn, and Dn for n ≥ 1 are given above, while

B0 =
a

2π

∫ π

−π

f(θ) dθ =
b

2π

∫ π

−π

g(θ) dθ,

and A0 is an arbitrary constant.


