o Y, Solutions to Problem Set1

F (=

* :;'E-;-EF : Math 300 - Spring-Summer 2018
Question 1.

For the following functions, sketch the Fourier series of f(z) on the interval —L < z < L, and determine the
Fourier coefficients:

(a) f(z) = { 1 for |z| < L/2

for |z| > L/2
(b)f(x):{l ifo0<a <L

if —L<x<0

SOLUTION:

(a) From Dirichlet’s theorem the Fourier series of f(x) converges to

N |

[f@™) + f(z7)]
if —L <2 < L, and the graph of the Fourier series of f(x) on the interval —L < x < L is shown below.
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Since f(z) is an even piecewise smooth function on the interval [—L, L], it has a Fourier series repre-
sentation of the form

= nmwx
f(z) ~ap+ Z an,
n=1

COS T
where ;
1 [t 1 [z 1
= — dor = — lde = -
ao I /0 f(x)dx I /0 T 5
and
L L L
2 nmwx 2 2 nmwr 2 . nmx|? 2 . onm
an = — f(x)cos —dax = — cos —dr=—sin——| = —sin—
L Jy L L Jy nmw 0 nmw 2
for n > 1.

(b) Again, from Dirichlet’s theorem the Fourier series of f(x) converges to

[f@@®)+ f(z7)]

N |

if —L < x < L, and the graph of the Fourier series of f(x) on the interval —L < 2 < L is shown below



1
Since f(z) — 3 is an odd piecewise smooth function on the interval [—L, L], it has a Fourier series

representation of the form

1 > nwx
f(ﬂ?) - 5 ~ nz::lbn Sin T

where
2 [t 1 1
bn:f/o (f(x)—Q)sinnzxdx:L/o sin%dw
1 1
= —— cos == = —— (cosnmw — 1)
nmw L |, nmw
1
- (=1
- (-
for n > 1.

Question 2.
Show that the Fourier series operation is linear: that is, show that the Fourier series of

c1f(z) + cag(z)

is the sum of ¢; times the Fourier series of f(x) and ¢o times the Fourier series of g(x).

SOLUTION: Suppose that the Fourier series of f and g are given by

= nwx . nTT > nwx . nTT
flx) ~ Ag + Z (An €08 —— + B, sin T) and g(x) ~ Co + Z (C’n €08 —— + D, sin T)

n=1 n=1
where . . .
1 1 nwT 1 nwT
0= 357 /_L f(x)dz, A, L/—L f(x) cos 7 dx, By, L/_Lf(x)sm T dx

forn > 1, and

L L L
1 nwx 1 nwT
Co 5T /_Lg(m) dz, C, L/_Lg(m) cos — dx, n L/_Lg(m) sin — dx

for n > 1.



If ¢; and ¢y are scalars, and the Fourier series of ¢1 f + cog is

o0
e1f (2) + ag(@) ~ B+ ) (En cos ? + F, sin L?) 7

n=1
then
1 L L
EO:—/ (c1f(x) + cag(x dx*—/ f(z d:c+— g(x)de = c1Ag + c2Cp.
2L J_;, —L
Also,
1 L
E, == / (c1f(x) + cag(x)) cos LU
L) . L

L L
_a e 2}
= L[Lf(x)cos 7 dx + L/ g(x) cos 7 dx

—L
= ClAn + CQCn

for n > 1. Similarly,

L
= %/_L (c1f(z) + cag()) sin? dx

L L
:%/_Lf(x)sin$dx+% _Lg(x)sin$dx

- Can + CQDn

for n > 1. Therefore the Fourier series for ¢; f + cag is

> nwx . onwT
e f(x) + cag(x) ~ 1 Ag + 2Co + Z <(01An + c2C) cos < + (¢1 By + c2Dy,) sin T)

A0+Z(A cosnL +Bn51nm£ ) + ¢

n=1

~c1f(x) + cag(x).

CO+Z(C cos nL + D, smnzx)]

n=1

Question 3.

For the following functions, sketch f(x), the Fourier series of f(x), the Fourier sine series of f(x), and the
Fourier cosine series of f(z), and determine the Fourier coefficients:

x —L<z<0 2, —L<z<0

(&) f(@) = 142 O<az<L (b) f(z) = e 0O<xz<lL

SOLUTION:

(a) Fourier Series: The graphs of f(z) and the Fourier series of f(z) are shown below.
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The Fourier series representation of f(x) is
f(x) ~ag+ Z ay, cos "FE + by, sin ”g“’)
n=1
where Lo Lo g 1 ,
aozi/_Lf(x)dxzi/_Lxdw—kﬁ 1dar:EL:§7
since the function x is an odd function on [—L, L].

Forn > 1,

I I 1t
zz/_Lf(x)cos%dx:Z/_Lxcos%dx—i—z/o cos 7L dx

L
:07
0

_ nmwx
= — SlIl I

nm

since x cos “T* is an odd function on [~L, L], and

I 1t I
== flx smwdx——/ xsin *7F dr + — / sin *7* dx
L/_L L], LJ,

2 1 (L
:z/o xsmmdm—&—L/O sin “7¢ dw

=~ |——xcos — [ cos x|+ — | —— cos 222
L| nrm Ly nmJo L\ nr E )
1 2L(~1)"

- (=1 -
— =07 o

Fourier Sine Series: The graphs of the odd extension of f(x) to the interval [-L, L] and the Fourier
sine series of f(z) are shown below.
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y

The Fourier sine series representation of f(x) is

g b,, sin 2= ””

where
2 [t 2 [
bn:Z/(; f(ac)sin"—zmdmzf/o (1 + ) sin "% dx;
=7 _7r(1+m)COSLO+mr/O cosde]
2 C2L(-1)"

nm nm



Fourier Cosine Series: The graphs of the even extension of f(z) to the interval [—L, L] and the Fourier

cosine series of f(x) are shown below.
y
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The Fourier cosine series representation of f(z) is

f(:lc)fvao—i—Zancos%7
n=1
where . .
1 [t 1 [t 1 2 L
= — dr = — 1 dr = — — =(1+=
ag L/o f(x)dx L/O(—&-x)x Lx0+ 01 (+2),
and for n > 1,

2 (* 2 (*
an:—/ f(x)cos"z“'dx:—/ (1+ ) cos “F* dx
L Jo L Jo

2 L : T r L o s N
=7 [m(l + x) sin “F* . “or )y sin “7E dx]
T 22 L . = 2n2 [(=1)" —1].

The Fourier series representation of f(z) is

fx) ~ao+ Z (ancos% —&—bnsin%),

n=1

where

a —l/L f(av)al:r—i ’ 2d$+1/Lewdx—1(2L+1—eL)
DY “oL ), 2L J, T 2L '



Since
axr

/e‘” cosbr dr = ﬁ (bsinbx + acosbx),
a
then
1 /L (@) 1 /0 1 [F
ap = — flx cosmdm:—/ 2008””6[95—}——/ e~ cos ML dx
"L, L L) g b L Jy L
0 o L I L
:Esm%_L 7L2+n2ﬂ_26 msm%o_iLQ—i—n%rQe ICOS"LﬂO
L —L
T L2+ n2r2 [1—e " (=1)"]
for n > 1.
Since e
/e“z sinbx do = 210 (asinbx — beosbzx) ,
a
then
1 [t I 1 [t
bn:Z/_Lf(x)sin”zxdgc:Z/_L2sin%dx+z/o e *sin “7F dw
0 L L
2 L . nmw _
:_%COS% 7L_L2+n27r2€ zsanﬂo T 121 22 zCOSLFO
nm L
T 121 n2n2 [1—e"(-1)"]
for n > 1.

Fourier Sine Series: The graphs of the odd extension of f(x) to the interval [—L, L] and the Fourier
sine series of f(z) are shown below.
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The Fourier sine series representation of f(x) is

f@) ~ > by sin 22,
n=1
where
2 [t 2 [t
by, = Z/o f(x)sin “7E dx = Z/o e "sin "FE dw

2L —T . nmrT g 2nm —x L NTT r
T T2y nze2t ML . 12+ 22t 8L .

2nm L "

T L2t 22 [1—e " (=1)"]

for n > 1.



Fourier Cosine Series: The graphs of the even extension of f(z) to the interval [—L, L] and the Fourier
cosine series of f(x) are shown below.
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The Fourier cosine series representation of f(z) is

[ee]
f(x) ~ag+ Zan cos “TE,

n=1
where . . .
1 1 1 1
ap = E/o flx)de = E/o e “dx = —ze_m . =7 (1—e_L).
Since
axr
/e‘“c cosbr dr = poe (bsinbx + acosbx),
then
2 [F 2 [F
ap, = —/ f(x)cos “FE dx = —/ e " cos " dw
L Jy L Jy
L L
7L2+n27r26 sin °F ) L2+n27r26 cos T .
2L .
T 12+ n2n2 [1 —¢€ <_1)n}
for n > 1.
Question 4.
Show that e® is the sum of an even function and an odd function.
SOLUTION: We can write
. €5 +e ™™ et —e" .
e’ = + = coshz + sinh x,

2 2
and cosh z is an even function while sinh z is an odd function.

In general, if f(x) is an arbitrary function, then we can write

f(.’L‘) = feven(x) + fodd(x)

where

o = L2110
is even, and

fuia(w) = L ZIED

is odd.



Question 5.

Find all solutions to the boundary value problem

¢"(z) + o(z) =

SOLUTION: The general solution to the differential equation is
¢(xr) = Acosz + Bsinz, 0<z<1.
Appying the first boundary condition,

the solution becomes
¢(x) = Bsinz, 0<z<1.

Applying the second boundary condition,
¢(1) = Bsinl =0,
and since sin 1 # 0, then B = 0, and the only solution to the boundary value problem is the trivial solution
o(z) =0

for0 <z <1.

Question 6.

dx

1
Consider the integral /0 152

(a) Evaluate the integral explicitly.

1
(b) Use the Taylor series of o2 (a geometric series) to obtain an infinite series for the integral.

2

(¢) Equate part (a) to part (b) in order to derive a formula for .

SOLUTION:
(a) Since
d, 1
g (1 e) = 5
we have

1 1
1 ™

/ ﬁdx:tan_lx =tan '1—tan"t0 = —.
0o 1+ 0 4

(b) Recall that the geometric series

1
IR LT
11 + + ,
that is,
1 = ny2n
i B
n=0

converges for all —1 <t < 1.



Integrating from 0 to z, where |z| < 1, we get

/Omljtzdt:/om (i(—l)”t“'") dt

n=0

— i(q)” /Oz 2 dt

2n+1 |
nt

=2 (1) I+ 1

and therefore

o0
-1 (-1 2n+1 _ _13 }5_17
tan x—nE:02n+1x = 3x —|—5x 73: +

for —1 < = < 1, and this is Gregory’s series for tan~! z, discovered by James Gregory about 1670.

Letting  — 17, then a theorem of Abel tells us that

1 xT oo
T 1 . 1 . (_1)n 2
— = — _dt=1 = dt=1 A7) 2n+41
1= = [ = i g
o0 o0
—1)n —1)n
:Z( ) hmxznﬂzz( )’
n:02n+1x—>1* n:02n+1
so that
T 1+1 1+1 1 .
4 3 5 7 9 11 ’

this is Leibniz’s formula for %, discovered by Leibniz in 1673.

(¢) From part (b), we have

n

T=4) on + 1
n=0

The convergence is very slow however.

Another proof of Leibniz’s formula which doesn’t require integrating an infinite series term-by-term is
given below.

1 1 1 —1)nt !
1—§+5_,+...+L:/ (1—2*+2* 2%+ 4+ (-1)"2®"7?) da
0

7 2n —1
1 2
1— n
:/ 1=
o 1+a2
1 1 2n
1
e [
0 1+.’I} 0 1+.'L'
and therefore,

m 1 1 1 (=11 boog2n v 1
L (1—z 44y )= dr < "dr = — 0
4 ( R A v | /01+x2x_/()x T o1

as n — o0.




Question 7.

For continuous functions,

(a)
(b)
()

Under what conditions does f(x) equal its Fourier series for all « € [-L, L] ?
Under what conditions does f(z) equal its Fourier sine series for all « € [0, L] ?

Under what conditions does f(x) equal its Fourier cosine series for all = € [0, L] ?

Hint: What does the Fourier series converge to at the end points of the interval?

(a)

From Dirichlet’s theorem, we know that for any zy with —L < xg < L, the Fourier series of f converges
to f(xzo) since f is continuous at xg.

We also know that at the endpoints x = —L and x = L, the Fourier series converges to

1 _

S )+ f(-19)].
and if f is continuous at the endpoints, that is, continuous from the left at x = L and continuous from
the right at x = — L, then the Fourier series converges to

f(L) + f(=L)
2

at © = L and at © = —L, so that the Fourier series converges to f(z) for all x € [-L, L] if and only if
f(L) = f(=L).

Again, from Dirichlet’s theorem, if 0 < xo < L, then the Fourier sine series of f converges to f(xo)
since f is continuous at xg.

If foaq is the odd extension of f to [—L, L], then at = = 0, the Fourier sine series of f converges to

1 _ 1

3 [foad(07) + foaa(0F)] = 3 [-f(0) + f(0)] =0,

and the Fourier sine series converges to f at = 0 if and only if f(0) = 0.

If foaq is the odd extension of f to [—L, L], then at « = L, the Fourier sine series of f converges to
1

3! [F(L) = F(L)] =0,

fodd(L™) + foaa(=LT)] = % [foad(L) + foaa(=L)] = %

and the Fourier sine series converges to f at x = L if and only if f(L) = 0.

From Dirichlet’s theorem, if 0,29 < L, then the Fourier cosine series of f converges to f(zq) since f is
continuous at xg.

If foven is the even extension of f to [—L, L], then at x = 0, the Fourier cosine series of f converges to

[£(0) + £(0)] = £(0),

N

% [feven(o_) + feven(0+)] -

and the Fourier cosine series of f converges to f at = 0 if and only if f is continuous from the right
at x = 0.

If foven is the even extension of f to [—L, L], then at x = L, the Fourier cosine series of f converges to

1

% [feven(L_) + feven(_L+)] = % [feven(L) + feven(_L)] 5 [f(L) + f(L)] = f(L)7

and the Fourier cosine series of f converges to f at x = L if and only if f is continuous from the left
at x = L.



Question 8.

Consider the boundary value — initial value problem

ou_ o
ot oz

%(O,t)zo, t>0; %(L,t)z& t>0; u(z,0) = f(z), 0<ax<L.

O<xz<L,t>0

Solve this problem by looking for a solution as a Fourier cosine series. Assume that u and 9 are continuous
x
0%u

and 902 and — are piecewise smooth. Justify all differentiations of infinite series.
x

ot
SOLUTION: We assume a solution of the form

nmwx

o0
u(z,t) = Z an(t) cos <
n=0
and assuming all derivatives are continuous, we have
0%u = nm\ 2 nwx
— =— an(t (—) cos —
Ox? nz:% n(®) L L

and since u(x,t) satisfies the heat equation,

o _ o
ot oz’

then we have
=, nwx > nm 2 nwx
ngzo a,, (t) COS T = -k ngzo (In(t) (f) COs T

Collecting terms that multiply cos “7* for n > 0 for n > 1, and using the fact that these trigonometric
functions are linearly independent (they are orthogonal on the interval [0, L]), then we get

nmH 2
@, (t) = —kan(t) ()
and we can solve these first order linear ordinary differential equations for a,(t) to get

an(t) = Ane_(nT)Zkta

and the solution u(z,t) becomes

(o]
nim 2
u(z,t) = Z Ape=(E)F cog ?
n=0

Differentiating this with respect to z, we get

ou > —(mE)%kt (MY o NTT
%(1'775)—_;14”6 L (f) SIHT,

and setting x = 0, we get

and the first boundary condition is satisfied.



The solution is now -
nx\2p nmwx
H)=> A —() Rt oo T
u(xw,t) 2 n€ cos —

ou
and we note that the second boundary condition —(L,t) = 0 is also satisfied, so we only need to find the
x

constants A,, to satisfy the initial condition u(x,0) = f(x).
Setting ¢ = 0 in the above expression for u(x,t), we have

>, nwx

f(z) = u(x,0) = ZA" cos ——,

n=0

and the A,, are the Fourier cosine series coefficients of f(z), so that
9 L
A, = f/o f(@cos%dac7 n>1

and for n =0,

L
Ay = %/0 f(z)dx.

Question 9. Solve Laplace’s equation inside a rectangle 0 < x < L, 0 < y < H, with the following boundary
conditions:

ou ou
(a) %(O,y)zg(y), %(L,y)zo, u(m,O)zO, u(m,H) =0
ou ou 1 for 0<a<L/2, ou
b) —(0 =0 — (L =0 0) = —(x, H) =0
(b) 5 (0,y) =0, ==(L,y)=0,  u(z,0) {0 for L)2<<L 3y($7 )
SOLUTION:

(a) We assume a solution of the form u(x,y) = X (z) - Y (y), and substituting this into Laplace’s equation
we have
X"(x) Y (y) + X(x) - Y"(y) =0,
and
X'w) _ Y'(y)

X(z) Yy
so we get two ordinary differential equations

X" (x) = AX(z) =0 and Y (y) + A\Y (y) = 0.
We can satisfy the (homogeneous) boundary conditions by requiring that

Y(0)=0, Y(H)=0 and X'(L)=0.

:)\7

Therefore X and Y satisfy the boundary value problems
X"(x) = AX(x)=0, 0<z<L Y"'(y)+AY(y)=0, 0<y<H

X'(L)=0 Y(0) =0

Y (H) = 0.

We solve the complete (Dirichlet) boundary value problem for Y first, the eigenvalues are
nm 2
- ()
H

Yo (y) = sin 77y

with corresponding eigenfunctions

for n > 1.



The corresponding functions X (z) satisfy the boundary value problem

X"\ X, =0, 0<ax<L
X,(L) =0,
and since the boundary condition at x = L is homogeneous, we choose the following representation of

the general solution
Xy (z) = Acosh %7 (L — x) 4+ Bsinh 57 (L — ),

and the condition X/ (L) = 0 implies that B = 0. Therefore the solution to the boundary value problem
for X is
Xn(x) =cosh®ZH(L —x), 0<wz<L

for n > 1.

From the superposition principle, the function

Z B,, sin 57y cosh 57 (L — x) (%)

n=1

satisfies Laplace’s equation in the region 0 < z < L, 0 < y < H, and satisfies all of the boundary

0
conditions except a—Z(O,y) = g(y).

In order to satisfy this condition, we have to use the orthogonality of the eigenfunctions on the interval
0 < y < H. Differentiating (x) with respect to x, and setting x = 0 we get

6
gly) = Z B sin 5%y sinh X L,

multiply both sides of this equation by sin %y, and integrate over the interval 0 <y < H, to get

H
/ g(y)sin By dy = — Z—slnh%Bn/ sin “fy sin 7y dy
0 0

and using the orthogonality of the eigenfunctions, we have

—2

H
B,, = L /O g(y) sin %y dy (%)
H

for m > 1.

The solution to Laplace’s equation satisfying the given boundary conditions is given by (x), where the
coefficients B,,, m > 1, are given by (k).

Assuming a solution of the form u(z,y) = X(z) - Y (y) and separating variables we get the boundary
value problems

X"(@) +AX(2) =0, 0<x<L Y'(y)-AY(y)=0, 0<y<H
X'(0)=0 Y'(H)=0
X'(L) =o0.

We solve the complete (Neumann) boundary value problem first, the eigenvalues are
nm 2
= (7)

X (z) = cos Fw

with corresponding eigenfunctions

for n > 0.



The corresponding functions Y, (y) satisfy the boundary value problem

Y- M\Y,=0, 0<y<H
Y!(H) =0,

n

and since the boundary condition at y = H is homogeneous, we choose to represent the general solution

as follows
Y, (y) = Acosh 5% (H — y) + Bsinh % (H — y),

and now the condition Y, (H) = 0 implies that B = 0. Therefore the solution to the boundary value
problem for Y is

Yo(y) =coshZ(H —y), 0<y<H
for n > 0.

From the superposition principle, the function

Z A, cos " x cosh B (H — y) (%)
n=0

satisfies Laplace’s equation in the region 0 < =z < L, 0 < y < H, and satisfies all of the boundary
conditions except
1 for 0<az<L/2,

u(m,O)Zf(x):{O for L/2<x<L.

In order to satisfy this condition, we have to use the orthogonality of the eigenfunctions on the interval
0 <2 < L. Setting y = 0 we get

f(x) = u(x,0) E A,, cos Lxcosh%,

multiply both sides of this equation by cos “*x, and integrate over the interval 0 <z < L, to get

L e
/ J(x)cos Hradr = E cosh "ZHAn/ cos "t x cos Fa dx
0 o 0

so that
1 2sin %
R T N ()
for m > 1.

From (x) and (#x) the solution to Laplace’s equation satisfying the given boundary conditions is given
by

l\DM—l

= 2sin?F . .
E ( ur cosh 72 mH cos “Fx cosh % (H — y)

for0<z<Land 0<y< H.



Question 10. Solve Laplace’s equation inside a circular annulus (0 < a < r < b)

10 ou 1 0%u
2 _ — e —_ - —
vu_r8r<rar>+r2892 0, a<r<b —m<fd<m

subject to the boundary conditions

u ou
E(Q’G) = f(0), E(b’ 0) = g(0),

for —m < 0 < .

SOLUTION: Note that we need to include two periodicity conditions to get the right number of boundary
conditions:

ou ou
u(r, —m) = u(r, ) and %(T, —m) = %(r, )

fora <r <b.

We assume a solution of the form wu(r,6) = ¢(0) - G(r), and substitute this into Laplace’s equation to get

rd(de\_ _1d% _
Gdr\ dr)  ¢diz "

We can satisfy the periodicity conditions by requiring that

¢(—m)=¢(r) and  ¢'(-m)=¢ (),

and we can satisfy the boundary condition ?(a, 0) = 0 by requiring G'(a) = 0. and we have two boundary
r

value problems:

riﬂ(rif)—)\G_O, a<r<b ¢"O)+ X p(0) =0, —mw<O<T
G'(a) =0 ¢(=m) = o(m)
¢'(—m) = ¢' ()

We solve the complete (two periodicity conditions) boundary value problem for ¢ first, again we consider
three cases.

case (i): If A = 0, the general solution to the differential equation ¢’ = 0 is ¢(0) = Af + B, with ¢'(0) = A.
The first periodicity condition implies that

—Arm+ B = An + B,

so that A = 0. The solution is now ¢(f) = B, and the second periodicity condition is also satisfied, the
(nontrivial) solution is ¢(f) = B. In this case, the eigenvalue is Ay = 0 with corresponding eigenfunction

$o(0) = 1.

case (ii): If A < 0, then A\ = —pu? where u # 0, and the general solution to the differential equation
(b// _ M2¢ =0is

¢(0) = Acosh uf + Bsinh u, with  ¢'(0) = pAsinh p6 + puB cosh pf.

The first periodicity condition implies that

A cosh(—pm) + Bsinh(—um) = A cosh pum + Businh pr,

and since cosh pf is an even function and sinh p is an odd function, then

2B sinh pm =0,



so that B = 0. The solution is now ¢(0) = A cosh puf, and the second periodicity condition implies that
pAsinh(—pm) = pAsinh pm,
so that 2uAsinh ur = 0, and so A = 0. In this case we have only the trivial solution ¢(6) =0, —7 < 0 < 7.

case (iii): If A > 0, then A = p? where p # 0, and the general solution to the differential equation ¢" +pu?¢ = 0
: ¢(0) = Acos b + Bsin pb, with @' (0) = —pAsin pd + puB cos uf.
The first periodicity condition implies that
Acos(—um) + Bsin(—un) = Acos um + B sin ur,
and since cos pf is an even function and sin 6 is an odd function, then
2B sin um = 0.
The second periodicity condition implies that
—pAsin(—pm) + pB cos(—pm) = —pAsin um + puB cos ur,

so that
2puAsin um = 0.

There is a nontrivial solution if and only if at least one of A and B is nonzero, and the above implies that
sin um = 0, that is, um = nn for some integer n. In this case the eigenvalues are \,, = n?, with corresponding
eigenfunctions

dn(0) = cosnb and ¢ (0) = sinnb

for n > 1.

If n > 1, and we assume a solution to the corresponding equation
d [ dG 9

—(r— ) —n"G=0
"ar (T dr ) "

r— (ar®) —n%r® =0,

dr

of the form G(r) = r®, then

that is,
a?r® —n?r* =0
- )

so that o = +n, and we get two linearly independent solutions

Gip(r)=1r" and Gon(r) = —

and the general solution is
B
Gp(r) = Ar" + o

forn > 1.



If n = 0, the corresponding differential equation for G(r) is

dG
0
"ar < dr) ’
and we get two linearly independent solutions
Glo(T) =1 and GQO(T) = IOg T,

and the general solution is
Go(r) = A+ Blogr,

From the superposition principle, the function

u(r,0) = Ao + Bologr + Z [ (A, cosn + By, sinnf) + —(C cosnf + D, sin n@)] )
n=1
with
5‘u =4 i [ Y(A, cosnb + B, sinnf) — - (Cy, cosnb + D, sin nG)]
8r prL "

satisfies the periodicity conditions and Laplace’s equation in the annular region a <r <b, —7w <0 <.

We can satisfy the boundary conditions

ou ou

a0 =10) and  SU0.0) = g(0)
for ; —m < 6 < 7w by requiring that
=4 Z [ Y(A, cosnb + B, sinnb) — a:“‘l (Cy, cosnb + D, sin n@)}

Z { b" 1 (A, cosnd + B, sinnf) — Cy, cosnb + D, sin n@)}

Hn +1(
where the coefficients are determined using the orthogonality of the eigenfunctions
{1, cosf, sinf, cos26, sin26, cos30, sin30, ---}

on the interval —m < 0 < 7.

Multiplying equations ({1) above by the eigenfunction 1 and integrating over the interval [—m, 7], we obtain

a b [T
By = o | f( ) do and By = by /_7r g(0) do,

that is,
£(6) add = / 9(0) bdo.
Note that this also follows from the divergence theorem, since

b 0)bdo — / (a,0) ad@-/ grad u~nds:/ Aurdrdd =0,
oD D

where D is the closed annular region between the circles r = a and r = b and n is the outward unit normal
to the boundary of D.



Multiplying the equations (1) by the appropriate eigenfunctions and integrating over the interval [—, 7],
we get

g 1
_ n—1
f(0)cosnb df = nr (a A, — s Cn>

—Tr

B 1
_ n—1
/ 9(0) cosnf d = n (b An = Cn>

—T

T : _ n—1 1
g f(0)sinnb df = nr (a B, — WD"

s 1
2 n—1
/ g(0)sinnf df = nw (b B, — o 1Dn) ,

—T

and solving for A,,, B, C,, and D,,, we have

C, = e -a"/w (0) cosn@bdf — b" ! f(0) cosnb adb
" o —a?n) | ), g —

Do ant -a"/w (0) sinnfbdo — b Wf(&)sinnGadG
"o —a2n) | ), g —r

for n > 1.

The solution to the Neumann problem for Laplace’s equation in the annulus a < r < b is given by (f), where
the coefficients A,,, By, Cy, and D,, for n > 1 are given above, while

Uy b v
Bo=5 [ f@)d8=5- [ g@)as,

and Ag is an arbitrary constant.



