Solutions to Practice Problems for Final Examination

Question 1. Given the function
flz)=2, —-nm<z<m

find the Fourier series for f and use Dirichlet’s convergence theorem to show that
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Z ) Lsinna a
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n=1
for 0 < a < .

SOLUTION: Since f(x) is an odd function on the interval [—m, 7], the Fourier series of f(x) is given by
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for n > 1.
Therefore
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and from Dirichlet’s convergence theorem, since f(x) is continuous for —m < z < =, the Fourier series
converges to f(z) for —m < x < =, that is,
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oo
for —m < x < 7, in particular, choosing = = a, we get
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for0<a<m.



Question 2. Let 0 < a < m, given the function

1 .
fa) = % if |z|<a
0 if ze(-mmn], and |z]>a

find the Fourier series for f and use Dirichlet’s convergence theorem to show that

o0 . 1
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n=1

for0<a<m.

SOLUTION: Since f(x) is an even function of the interval [—m, 7|, the Fourier series of f(z) is given by
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where

and

that is,

for n > 1, and
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for —m <z <.

Since f(x) is continuous on the interval —m < x < 7 the Fourier series converges to f(z) for —m < z < m,
that is,
1 1 = sinnacosnz

f(l’):§+%n_l .

so that

for0<a<m.



Question 3. Consider the regular Sturm-Liouville problem
1
(z¢) +X2=9p=0 1<z<2
x

¢(1) =0
¢(2) =0

(a) The general solution to the differential equation is
¢(x) = Acos(Alnz) + Bsin(Alnx).
Find the eigenvalues A2 and the corresponding eigenfunctions ¢,, for this problem.
(b) Show directly, by integration, that eigenfunctions corresponding to distinct eigenvalues are orthogonal.

(¢) Use the Rayleigh quotient to estimate the smallest eigenvalue of this regular Sturm-Liouville problem.

Note: From part (a), the first eigenvalue and eigenfunction are

o (T 2N . mlnz
Al_(lnz) ~20.5423  and ¢1(a:)_sm< = )

Try to find a reasonable estimate.
SOLUTION:

(a) If
o(z) = Acos(AInz) + Bsin(Alnx)

for 1 <z < 2, then
AA B
¢ (x) = Y sin(Alnx) + % cos(Alnx),

so that
¢ (z) = —AAsin(Alnz) + ABcos(AInz),
and A2A \’B
(z¢/(z)) = 0 cos(Alnz) — sin(Alnx).
Therefore

1
(26 (2))' +\* — 6(2) = 0
for 1 <z <2, and ¢(z) is a solution to the differential equation.
In order to satisfy the first boundary condition ¢(1) = 0, we need
¢(1) = Acos0+ Bsin0=A =0,

and the solution is now
¢(x) = Bsin(Alnz)

forl <z <?2.

In order to satisfy the second boundary condition ¢(2) = 0, we need
¢(2) = Bsin(Aln2) =0,

and if B = 0 we get the trivial solution.

Therefore we have a nontrivial solution to the boundary value problem if and only if
sin(Aln2) =0,

that is, if and only if AIn2 = n7 for some integer n.



The eigenvalues and eigenfunctions for this boundary value problem are given by

9 _ (T2 . (nmlnz
)\”_(ln2> and ¢n($c)—sm< o >, l<x<?2

for n > 1.

(b) From the differential equation, eigenfunctions corresponding to distinct eigenvalues will be orthogonal

on the interval [1,2] with respect to the weight function o(xz) = —.
x

To show this directly, suppose that m and n are positive integers with m # n, then

2 In In 1
/ Om (T)n (2 dgc = / sin (W) sin (n7lrn2x> ~ dx
1
= 1n2/0 sin(mat) sin(nnt) dt (t=Inz/In2)
=0
if m #n.
(¢) Let u(x) be a test function satisfying only the boundary conditions
u(l) =0 and u(2) =0,
the simplest such function is the quadratic
u(z)=2—-z)(z—1)=—-2>+3z—-2  with  «/(z) =2z +3.

The Rayleigh quotient for this function is

SR

where p(x) =z, ¢(z) =0, and o(z) =

Computing R(u), we have

2
/ x(2r — 3)? dx
1

/1 [(2—2)*(z —1)*/z] dz

_ 1/2
© —11/4+41n2

and since A\ is the minimum Rayleigh quotient over all such test functions, then
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Question 4. Find the solution of the exterior Dirichlet problem for a disk, that is find a bounded
solution to the problem:

Lo @ +i@—0 a<r<oo, -—-m<0<
ror\ or r2 002 T m
u(r,m) =ulr,—m)  a<r<oo

ou ou
%(T‘,ﬂ')—%(’/’,*ﬁ) a<r<oo

u(a,0) = f(0) —m<f<m.

SOLUTION: A solution to Laplace’s equation in polar coordinates which satisfies the periodicity conditions
is given by

= 1
u(r,0) = Ag + By logr + Z {r” (An cosnb + B,, sin n6‘) +— (Cn cosnf + D,, sin n9) }7
r
n=1
and in order to satisfy the boundedness condition we need By = A,, = B, =0, forn=1,2,3,..., so that
=1
0)=A —(Cy 0+ D,, sinnf).
) O+Z7’n< cosnf + sinnf)

Now, when r = a we have

f(0) = u(a,0) A0+Z (Cy cosnb + D, sinnb),

where
1 s

Ay = > f(¢) do,

Cn - % ’ f(¢) COos TL¢ dd)’

D, =% [ f(6) sinnods
forn=1,2,3....
Therefore

— 5 | r@do+ i; ()" | @) cosno cosnd + sinng sinns do

that is,

u(r,@)z%/j {1+2Z( ) cosn(f — ¢)}d¢.

We can actually sum the series to get a much simpler expression for u(r, ). Let z = ¢ e'(?=%) then
r
n_ (@ " in(0—¢) _ a\”™ -
Zt=(-) e =(—) [cosn(d —¢)+isinn(d— )|,
r r

and

1+22( ) cosn(f — ¢) = Re(l+2iz").

n=1



Since |z| = 2 < 1, then
r

2z 1+2 r? —a?
142 (60— 1 = - '
+ Z( ) cosn(f — @) = ( +1_2) Re<1_z) a? — 2ar cos(0 — ¢) + 12

The solution to the exterior Dirichlet problem for the disk is therefore

1 /7r (r* —a®) f(¢)
2r |, a% = 2ar cos(0 — ¢) + 12

u(r,0) = de,

fora<r<oo, —-wm<6O<m.

Question 5. Find all functions ¢ for which u(x,t) = ¢(x + ct) is a solution of the heat equation
o _ 10
ox? kot

where k and c are constants.

SOLUTION: If u(z,t) = ¢(z + ct) is a solution to the heat equation
O*u  10u
0x2  kot’

let £ = x + ct, then from the chain rule we have

du _ dp 9§ _ d¢
dx  dE Oz dE’

u o\ 96 d*¢
922 d¢ (df) e
du _ dp 9 _ do

ot de ot Cde

Therefore, ¢ satisfies the ordinary differential equation

Po cd
& hE "

and the solution is given by
$(§) = A+ Bek®,

that is,
u(x,t) = A+ Bek@ted

where A and B are arbitrary constants.



Question 6. Consider torsional oscillations of a homogeneous cylindrical shaft. If w(z,t) is the angular
displacement at time ¢ of the cross section at x, then

0w 5 0w
Solve this problem if
w(z,0) = f(x) O0<z<L
0
8—‘?(%0):0 0<z<L,
and the ends of the shaft are fixed elastically:
0
a—‘;(o,t) —aw(0,t)=0 t>0
%(Lt)+ (L,t)=0 t>0
90 L aw(L,t) =

with « a positive constant.

SOLUTION: Since the partial differential equation is linear and homogeneous and the boundary conditions
are linear and homogeneous, we can use separation of variables. Assuming a solution of the form

w(z,t) =¢(x) - G(t), 0<z<L, t>0
and separating variables, we have two ordinary differential equations:

¢"(x) + Ap(x)
¢'(0) — ag(0)
¢'(L) + ad(L)

0<z<L, G"(t)+X*G(t)=0, t>0,

0,
0
0

We use the Rayleigh quotient to show that A > 0 for all eigenvalues .

Let A be an eigenvalue of the Sturm Liouville problem, and let ¢(x) be the corresponding eigenfunction,

then
L

= —¢(L)¢' (L) + $(0)¢' (0) = a($(0)* + &(L)?) > 0,

0
and since ¢(z) =0 < 0 for all 0 < 2 < L, then

—p(z)d(x)'(x)

L
a(6(0)% + $(L)%) + /O o (2)? dz
>

. /OL $(x)?* dx

0

since p(z) =o(z) =1for 0 <z < L.
Note that if A = 0, then .
a((0)* + ¢(L)*) + /O ¢'(x)* dz =0
implies that
a(6(0)> + ¢(L)*) =0 and /OL ¢ (z)*dz = 0.
Since « > 0, this implies that ¢(0) = 0 and ¢(L) = 0; and since ¢’ is continuous on [0, L], that ¢'(x) = 0 for

0 <z < L. Therefore ¢(x) is constant on [0, L], so that ¢(z) = ¢(0) =0 for 0 < z < L, and A = 0 is not an
eigenvalue, and all of the eigenvalues A of this Sturm-Liouville problem satisfy A > 0.



If A > 0, then A\ = p2, where p # 0, and the differential equation is ¢” + p2¢ = 0 with general solution
o(x) = Acos ux + Bsin ux and ¢ (x) = —pAsin px + pB cos px

for0 <z < L.

From the first boundary condition

¢'(0) — ag(0) = uB — aA =0,
B
and A = %, and the solution is now

o(x) = B(pcos px + asin pzx).

From the second boundary condition
¢'(L)+ agp(L) = B [—/ﬂ sin uL + oy cos L + oy cos pL + o sin ML] =0,

that is,
B [(a2 — p?) sin puL + 201 cos ,uL} =0,

and the boundary value problem has a nontrivial solution if and only if

2o
tan ulL = 2ot
that is, if and only if
200V A
tan VAL = av/A .
A—a?

In order to determine the eigenvalues we sketch the graphs of the functions

2004

f(u)=tanpuL  and  g(p) = o

for > 0.

Note that for u > 0, we have

2004 1 1
o) =t —a | ]

so that
1 1

/
g (p) = - [ +
(kta)  (p—a)?
and ¢ is decreasing on the interval (0, «) and on the interval («, c0) and the line u = « is a vertical asymptote
to the graph. The graphs of g and f are shown below.
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From the figure it is clear that there are an infinite number of distinct solutions pu,, to the equation

2o

tan,uL = m,

and the eigenvalues are \,, = p2, for n > 1, while the corresponding eigenfunctions are
(bn(m) = fin COS @ + asinpip,x, 0<z <L
for n > 1.

The corresponding solutions to the time equation are
G, (t) = a, cos ppat + by, sin ppat, ¢ >0

and from the superposition principle, the function
o oo
w(x,t) = Z On(x) - Gu(t) = Z (tin, €08 pin® + asin g, x) (ay, cos pipat + by, sin py,at)
n=1 n=1

satisfies the partial differential equation and the boundary conditions.

Since the spatial problem is a regular Sturm-Liouville problem, then the eigenfunctions are orthogonal on
the interval [0, L], and we use this fact to satisfy the initial conditions

w(z,0) = f(z) = Z UG () and %(:&0) = anun¢n(x) =0,
n=1 n=1

and the generalized Fourier coefficients are given by

N * f@)on(@) da
n /OL(;ST,,(I)zdI

for n > 1.

Therefore the solution is

oo
w(z,t) = Zangbn(ac) cosppat, 0<xz <L, t>0
n=1

where

N " F)on(a) do
o /()qun(x)?d:c

for n > 1.



Question 7. Use D’Alembert’s solution of the wave equation to solve the initial value - boundary value
problem:

Pu 1 0%
u(z,0) = f(z) —oo <z <00
%(m,())zg(a:) —oo <z <00
. x
with f(z) =0 and g(x) = T2

SOLUTION: The initial value - boundary value problem for the displacement of an infinite vibrating string is

Pu 1 9%
u(z,0) = f(z) —00 <z <00
%(m,O)zg(m) —oo <z <00

and the general solution, that is, d’Alembert’s solution to the wave equation, is

x+ct
u(w,t) = 5 —ct)+ fr e+ 5 [ gls)ds

—ct

for —oo <z < oo, t>0,andsince f(z) =0 for —oco < & < oo, then

1 x+ct
u(e,t) =5 [ gls)ds
r—ct
1 x+ct s

=— ——ds.
2¢ Sy 1+ 82 3

The solution to the wave problem is therefore

i) = 5o (14 e+ )?) ~ a1+ o — )] = 1t [ TR,

for —co <z < oo, t>0.

Question 8. Obtain the expansion

sinhma = (—1)" .
= Z m(acos nx — nsin nx)
a

eam —
7T
n=

— 00

valid for all real numbers a # 0, and all —7 < x < 7.

SOLUTION: Let
fla)=e", —m<az<m flz+27)=f(x), a#0,

then . L
1 sinh wa
ag = — e’ dr = .

Ta

—T



Forn > 1,

1 " ax . (_1)n
ap = — e"® cosnx dx = 2asinhra——5———=,
I - m(n? 4 a?)

1 " ax _: . (_1)n
b, = — e sinny dr = —2nsinhra——5———-,
I - m(n? 4+ a?)

so the Fourier series is for f(z) on the interval —7 < z < 7 is given by
2 I & (=)
e = —sinhma ¢ — ————(acosnxr —nsinnx) ;.
0 { 2a + ; n2 + a2 ( )

Therefore,

sinh a 1

wp Sinhma .
et = E 2 5 acosm:—nsmmc)—i—
n +

smh Ta .
E 2 3 acosms—nsmmc),
™ —'n +

and replacing n by —n in the first sum, we have

—1
. smh7T ( n" .

e E —5—— (acosnz — nsinnz) +
“ n+a

(acosnx — nsinnx),

sinhma 1 n sinh wa i (=™
T a T — n? +a?

that is,

(acosnx — nsinnx)

er _ SiDhma o= (=17
== 2.

4~ n?+4a?

for —m <z <.



Question 9. Consider the regular Sturm-Liouville problem

(z°X") +AX =0 l<z<e

(a) Show that the substitution
Y

X=—
NG
transforms this problem into the following problem

$(1’Y/)/+,uY:O l<zx<e
Y(1)=0
Y(e)=0

1
where =\ — 1

(b) Let z = e' and Y (t) = Y (e'), show that this transforms the problem in part (a) into the problem

a2y S
+pY =0 0<t<1

d?
Y(0)=0
Y(1) = 0.

(¢) Find the eigenvalues and eigenvectors for the problem in part (b), and from these, the eigenvalues
and eigenfunctions in part (a), and finally obtain the eigenvalues and eigenfunctions for the original

Sturm-Liouville problem.

SOLUTION:
(a) Let
Y
X — 1>
xr2
then v v
! 1
X=7-2173
x2 x2
so that

3

22X =x2Y - L2y

—-
N[ =

[V

1o, 1
:1'2$Y—§1'2Y.

Differentiating again and simplifying, we have



Therefore,
(z* X')/ +AX = xié {x (2Y") + MY}
where =\ — i, and the original problem is transformed into the problem:
c(zY) +uY =0, 1<z<e
Y(1)=0
Y(e)=0
where p = \ — %.
Now let 2 = e! and Y () = Y (e!), then

dY dY dt 1dY

dr  dt dr oz dt’

that is, R
day dy

Ydr ~ dt’
4 (v _d (a0 @ _1ev ey
de \"dz ) T at\dt ) dz oz a4z~ ¢ a2

d dy
d;v( dm)+ Y=0 for 1l<z<e

Also,

and therefore

if and only if
a2y -
_tﬁ—ﬁ—e_tuYZO fOI‘ O<t<1

So we have the equivalent regular Sturm-Liouville problem

2y
Y=0, 0<t<l1
e T
Y(0) =0
Y(1) =0

with eigenvalues p,, = n?m2, and eigenfunctions

Yn(t) =sinnnt, 0<t<1
for n > 1.

The eigenvalues for the original problem are therefore

_ 2.2
An nﬂ'—i-4,

and the corresponding eigenfunctions are

X, (x) = sin(nrlogz), l<z<e

Sl-

for n > 1.



Question 10. Show that if |a] < 1, then

2

s acosTr —a

(a) > a"cosnz=-—F(———— for—m <z <,
el 1—2acosx+a
& . asinx

(b) > a™sinnz = 5 for —m <z <,
=1 1 —2acosx+a

SOLUTION: Let z = ae'®, then |z| = |a| < 1, so the geometric series

oo
E an 6”’11

n=0

converges and

oo .

" ine 1 1 1—-acosx asinx
E a“e™ =
n=0

1—aei® (1 —acosz)—iasinz " 1—2acosz + a2 +Z1—2acosx+a2'

Since
o0 oo oo
E ae™ =1+ E a” cosnx + 1 g a” sinnzx,
n=0 n=1 n=1

then
1—acosz . asinx

oo oo
1+ E a” cosnx + 1 E a” sinnx = )
— — 1—2acosz+a? 1—2acosz+ a2’

and equating real and imaginary parts, we have

o0 2
" l—acosx acosr —a
E a’ cosnxr = —1= ,
— 1 —2acosz + a? 1 —2acosz + a?
and
o0 .
" asinz
g a"sinny = —(———
et 1—2acosz+a

for -t <z <.

Question 11. Find the Fourier integral representation of the function

fla) = 1—cosx if —.§<x<g,
0 otherwise.

SoLUTION: The Fourier integral representation of f(z) is given by
f(z) ~ / (A(w) coswz + B(w) sinwz) dw,
0

where

Aw) = %/jo f(t)coswtdt  and  B(w) = %/:X) F(£) sinwt dt.

Since f(z) is an even function, then B(w) = 0 for all w.



Also, since f(x) is even and f(x) = 0 for |z| > T, then for all w # 0 and w # %1, we have

2 7\'/2
Alw) == (1 —cost)coswtdt
™ Jo
2 7\'/2 2 7'!'/2
= 7/ coswtdtff/ cos t coswt dt
™ Jo ™ Jo

9 i 9 1 /2
— 7% _ f/ [COS(l — w)t + COS(I + w)t] dt
™ w ™ Jo

w/2 /2

2sin(wr/2)  1sin(l —w)t
T w T l-w

1sin(l +w)t
0 T 14w

0

2sin(wr/2)  1sin((1 —w)r/2)  1sin((1+w)7r/2)

m w T 1-w ™ 14w

_ 2sin(wn/2)  cos(wm/2) 1 1

T w I l-w 14w

_ 2 [sin(wm/2)  cos(wm/2)

o w 1—w? |’
so that 9 Tsi 5 9

Aw) = 2 sin(wm/2)  cos(wm/2)
™ w 1—w?
for w # 0, £1.
If w =0, then
/2
A(0) = %/0 (1— cost)dt = % |5 —sin(m/2)] =1~ %

If w = +£1, then

2sin(£r/2) 2 [7/? 2 2 (™21 s 2t 2
A(il):—w——/ cos%dt:———/ LAY gp= 2
s +1 T Jo T T Jy 2 T

M| =

Note that A(w) is continuous for all w.

From Dirichlet’s convergence theorem, the integral

2 /°° [sin(wW/Q) _ cos(wr/2)
0

T w 1—w?

} cos wx dw
converges to 1 — cosz for all |z| < 5, converges to 0 for all [z| > %, and converges to & for x = +7.

Thus, if we redefine f(+7/2) = %7 then the Fourier integral representation of f(x) i s given by

1—cosz for |z| <7
2 [ [si 2 2
7/ |:SIH(OJ7T/ ) cos(mr/2 ) coswar dw = f(z) = 0 for |z > T
T Jo w 1-w
1 _ 4
5 for ©==+7.



Question 12. Find the Fourier integral representation of the function

T if —1l<z<l1,
2—x if 1<z <2,
—2—z if —2<ax<-1,

0 otherwise.

fx) =

SoLUTION: The graph of f(z) is shown below and it is easy to see that the function f(z) is

an odd function.

Therefore, A(w) = 0 for all w, and

2 [? 2 (! 2 [?
B(w):f/ f(t)sinwtdt:f/ tsinwtdt—f—f/ (2 —t)sinwt dt.
™ Jo T Jo ™1

Therefore, integrating by parts, we have

1

2 | —t ! t| 2 -2+¢ 2 2 t
B(w) = = | — coswt Jr/ Cosw]Jr + cos wt 7/ COSE at
T w 0 0 w ™ 1 1 w
2 cosw  sinwt|' 2 (cosw sinwtl|?
= | 2 +— - 2
T w w? |, T w w? |
2 [2sinw  sin2w
o | w? w?
2 (2sinw — sin 2w
R w? ’
that is,
2 [ 2sinw — sin 2w
Bw)=— (2220
() = 2 (B
for all w # 0.
If w =0, then
2 2
B(0) = 7/ F(t)sin(0 - 1) dt = 0.
™ Jo

Since f(z) is continuous everywhere, from Dirichlet’s convergence theroem, the Fourier sine integral converges

to f(z) for all z, and therefore
2 [ [25si —sin 2
7/ <smw S w) sinwz dw = f(x)
0

™ w?

for all z € R.



Question 13. Let

(a) Plot the function f(x) and find its Fourier transform.

(b) If £ is real valued, plot it; otherwise plot | ]?|

SOLUTION:

(a) The graph of the function f(x) is plotted below.

T if |z| <1,
) = {0 othlr\!vise.
y
1 ‘
! o, x
T-1

The Fourier transform of f(z) is computed as

N 1 [ . 1 ! )
flw) = —/ ft)e ™“tdt = —/ te “wtdt
2 J_ o 2 J_4

so that

for all w # 0.
If w =0, then

f

~

(

1
iefi‘*’t|1 + i
iw -1 dw )

efiwt dt:|

i 1 —tw w 1 —iwt '
—E (6 +e ) - We ‘|

) (Tai
)

ezw + 671(.«)

2w

W Ccosw — sin w

-~ ¢ [wcosw — sinw
f(w)_,ﬂ_< w2 )
1! 12|
= — tdt = — — =0
27 /_1 N ’

(0)

o~ o~

and from L’Hospital’s rule, we see that lir% f(w) = 0 also, so that f(w) is continuous at each w.
w—

(b) Since

then

for all w.

W COS W —sinw)
b

Sinw — w cosw

<

1

w2

w2



Note that the zeros of the function g(w) = sinw — wcosw are precisely the roots of the equation

tanw = w, so the graph of ‘ fw looks something like the figure below.

M\/\ﬂh/\m

Question 14. Find the Fourier cosine transform of

f(x):{l—x if 0<z<l,

0 it x>1.

and write f(z) as an inverse cosine transform. Use a known Fourier transform and the fact that if f(x), > 0,
is the restriction of an even function f,, then

Fe()w) = 2F(fe)(w)

for all w > 0.

SOLUTION: The Fourier cosine transform of the function f is given by

2 [ 9 1
:*/ f(t)coswtdt:f/ (1 —1t) coswt dt,
™ Jo T Jo

and this is the same as the Fourier transform of the even extension f. of f to the whole real line R.

In this case however, we can evaluate the last integral directly by integration by parts:

1 1 1
/ (1 —t)coswtdt = / coswt dt — / t coswt dt
0 0 0

sin wt ! sin wt ! 1 [t .
— |t - — sin wt dt
0 w g WJo

w

sinw sinw 1 1 !
= - + — | ——coswt
w w w w 0
1 —cosw
= — ,
and therefore 5 1
~ — cosw
W)= —
fe(w) T w?

for w > 0.

Knowing that f. is absolutely integrable implies that f; is continuous at w = 0, and we have

2 sin w 1
-_— lm = —
T w—0+ 2w T

P
—
(@)
=
I
=
\

I

by L’Hospital’s rule.



Therefore, we have

2 1-
R 7,$ for w>0
felw) = T ci}
— for w=0.
T

Since f, is continuous for all z € R, from Dirichlet’s theorem the inverse Fourier cosine transform of fc is
given by
1—=z for 0<x<1

T 2

2 /Ool—cosw
— ———— -coswzx dw =
0 w 0 for x>1.

Question 15. Find the Fourier sine transform of

f(x)

X

=Ty 70

and write f(z) as an inverse sine transform. Use a known Fourier transform and the fact that if f(x), > 0,
is the restriction of an odd function f,, then

Fs(H)w) = =2iF(fo)(w)

for all w > 0.

SOLUTION: We can find the Fourier sine transform of the given function using the suggested method, or we
can find it directly. To do this, we consider the function

glx)=e€e" x>0

with Fourier sine transform given by

2 (oo}
Js(w) = 7/ e 'sinwt dt
0

s

and we can evaluate this integral by integrating by parts:

o0 €7t oo 1 o0
/ e tsinwtdt = ——| — = / et coswt dt
0 W g W Jo

1 1], sinwt|™ 1 /> _, .
=———le " + — e ' sinwt dt
woow w o w Jo
1 1 >
=——-— e tsinwt dt
w  w? )

so that

1 > 1
<1 + 2) / e~ tsinwtdt = —.
w 0 w

[ee]
/ e tsinwtdt = d
0 1 + w2

Therefore,

for w > 0, so that

for w > 0.



Taking the inverse Fourier sine transform of this, we have

oo 9 oo
g(z) = /0 Js(w) sinwz dw = ;A T sin wx dw,
that is, N
e =gw) = %/0 I f:ﬁ sinwz dz,
and
~ 2 (>~ x . Y
fs(w):;/o T2 sinwzrdr = g(w) =e
for w > 0.

From the above, we can write f(z) as an inverse Fourier sine transform:

f(z) = T2 :/o e~ sinwz dw

for x > 0.

Question 16. Use the Fourier transform to solve the heat flow problem in an infinite rod

ou 0%u
(e, 0) = 2 for —.WSZ‘ST(
0 otherwise,

and express the solution as the difference of two error functions.

SOLUTION: The solution is the convolution
u(z,t) = f* G (z,t)

where
Glat) = —— e
r,t) = ——e¢
varkt

is the heat kernel, or Gaussian kernel, so that

1 ™ (z—5)?
u(r,t) = —— 2¢~ 40t (s
( ) V407t /_Tr
for —co <z < o0, t > 0.
Making the substitution
Tr—S q d 1 d
z = an Z = ——F——=Aas,
/40t V40t
when s = —m, then z = x W, and when s = 7, then z = * 77T, so that

ﬁ

V40t 40t

Xr—T

2 v/
) = — =~/ / 0 = g
A/ T ZTT
V40t

T+ T—T
9 ZTT ZT—T
= — / 00 o=t gy / 00 =" gt
v\ Jo 0

-a(558) ()




Therefore

u(x,t) = erf <%> ~orf (%;)

2 ¢ 2
erf(z) = ﬁ/o e % dz

for —oo < x < o0, t > 0, where

is the error function.

Question 17. Find the solution to the initial value problem

@_,_5@—6&

=e”, —co<r<oo, t>0
ot Ox =

u(x,0) = 67302, —00 < x < 00
using the method of characteristics.

SOLUTION: Let
dx

dat 7
then along the characteristic curve x(t) = 5t + a, the partial differential equation becomes

du _ Ou  Oudx _ 4

ot Tawat ¢

so that .
u(z(t),t) = gegt + K

1
where K is a constant, and K = u(x(0),0) — 37 %0 that

1 1 1 1 1
u(z(t),t) = §e3t + u(z(0),0) — 3= ge?’t + u(a,0) — 3= §e3t +e % — 3"

Given the point (z,t), let x = 5t + a be the unique characteristic curve passing through this point, then

1
u(z,t) = ge?’t te @ -

1 1
§e3t + e (=51 _ 5

W =



