
 

Solutions to Practice Problems for Final Examination

Question 1. Given the function
f(x) = x, −π < x < π

find the Fourier series for f and use Dirichlet’s convergence theorem to show that

∞∑

n=1

(−1)n−1 sinna

n
=

a

2

for 0 < a < π.

Solution: Since f(x) is an odd function on the interval [−π, π], the Fourier series of f(x) is given by

f(x) ∼
∞∑

n=1

bn sinnx

where

bn =
2

π

∫ π

0

x sinnx dx

=
2

π

[
− 1

n
x cosnx

∣∣∣∣
π

0

− 1

n

∫ π

0

cosnx dx

]

= − 2

n
(−1)n

and

bn =
2(−1)n−1

n

for n ≥ 1.

Therefore

f(x) ∼ 2

∞∑

n=1

(−1)n−1 sinnx

n
,

and from Dirichlet’s convergence theorem, since f(x) is continuous for −π < x < π, the Fourier series
converges to f(x) for −π < x < π, that is,

x = 2

∞∑

n=1

(−1)n−1 sinnx

n

for −π < x < π, in particular, choosing x = a, we get

∞∑

n=1

(−1)n−1 sinna

n
=

a

2

for 0 < a < π.



Question 2. Let 0 < a < π, given the function

f(x) =





1

2a
if |x| < a

0 if x ∈ (−π, π], and |x| > a

find the Fourier series for f and use Dirichlet’s convergence theorem to show that

∞∑

n=1

sinna

n
=

1

2
(π − a)

for 0 < a < π.

Solution: Since f(x) is an even function of the interval [−π, π], the Fourier series of f(x) is given by

f(x) ∼ a0 +
∞∑

n=1

an cosnx

where

a0 =
1

π

∫ π

0

f(x) dx =
1

π

∫ a

0

1

2a
dx =

1

2π
,

and

an =
2

π

∫ π

0

f(x) cosnx dx

=
2

π

∫ a

0

1

2a
cosnx dx

=
1

πa

∫ a

0

cosnx dx

=
1

πa
· 1
n
sinnx

∣∣∣∣
a

0

=
1

πa
· sinna

n
,

that is,

an =
1

πa
· sinna

n

for n ≥ 1, and

f(x) ∼ 1

2π
+

1

πa

∞∑

n=1

sinna cosnx

n

for −π < x < π.

Since f(x) is continuous on the interval −π < x < π the Fourier series converges to f(x) for −π < x < π,
that is,

f(x) =
1

2π
+

1

πa

∞∑

n=1

sinna cosnx

n

for −π < x < π, in particular, when x = 0, we have

1

2a
=

1

2π
+

1

πa

∞∑

n=1

sinna

n
,

so that
∞∑

n=1

sinna

n
=

1

2
(π − a)

for 0 < a < π.



Question 3. Consider the regular Sturm-Liouville problem

(xφ′)
′
+ λ2 1

x
φ = 0 1 ≤ x ≤ 2

φ(1) = 0

φ(2) = 0

(a) The general solution to the differential equation is

φ(x) = A cos(λ lnx) +B sin(λ lnx).

Find the eigenvalues λ2
n and the corresponding eigenfunctions φn for this problem.

(b) Show directly, by integration, that eigenfunctions corresponding to distinct eigenvalues are orthogonal.

(c) Use the Rayleigh quotient to estimate the smallest eigenvalue of this regular Sturm-Liouville problem.

Note: From part (a), the first eigenvalue and eigenfunction are

λ2
1 =

( π

ln 2

)2
≈ 20.5423 and φ1(x) = sin

(
π lnx

ln 2

)
.

Try to find a reasonable estimate.

Solution:

(a) If
φ(x) = A cos(λ lnx) +B sin(λ lnx)

for 1 < x < 2, then

φ′(x) = −λA

x
sin(λ lnx) +

λB

x
cos(λ lnx),

so that
xφ′(x) = −λA sin(λ lnx) + λB cos(λ lnx),

and

(xφ′(x))
′
= −λ2A

x
cos(λ lnx)− λ2B

x
sin(λ lnx).

Therefore

(xφ′(x))
′
+ λ2 1

x
φ(x) = 0

for 1 < x < 2, and φ(x) is a solution to the differential equation.

In order to satisfy the first boundary condition φ(1) = 0, we need

φ(1) = A cos 0 +B sin 0 = A = 0,

and the solution is now
φ(x) = B sin(λ lnx)

for 1 < x < 2.

In order to satisfy the second boundary condition φ(2) = 0, we need

φ(2) = B sin(λ ln 2) = 0,

and if B = 0 we get the trivial solution.

Therefore we have a nontrivial solution to the boundary value problem if and only if

sin(λ ln 2) = 0,

that is, if and only if λ ln 2 = nπ for some integer n.



The eigenvalues and eigenfunctions for this boundary value problem are given by

λ2
n =

( nπ

ln 2

)2
and φn(x) = sin

(
nπ lnx

ln 2

)
, 1 < x < 2

for n ≥ 1.

(b) From the differential equation, eigenfunctions corresponding to distinct eigenvalues will be orthogonal

on the interval [1, 2] with respect to the weight function σ(x) =
1

x
.

To show this directly, suppose that m and n are positive integers with m 6= n, then

∫ 2

1

φm(x)φn(x)
1

x
dx =

∫ 2

1

sin

(
mπ lnx

ln 2

)
sin

(
nπ lnx

ln 2

)
1

x
dx

= ln 2

∫ 1

0

sin(mπt) sin(nπt) dt (t = lnx/ ln 2)

= 0

if m 6= n.

(c) Let u(x) be a test function satisfying only the boundary conditions

u(1) = 0 and u(2) = 0,

the simplest such function is the quadratic

u(x) = (2− x)(x− 1) = −x2 + 3x− 2 with u′(x) = −2x+ 3.

The Rayleigh quotient for this function is

R(u) =

−p(x)u(x)u′(x)

∣∣∣∣
2

1

+

∫ 2

1

[
p(x)u′(x)2 − q(x)u(x)2

]
dx

∫ 2

1

u(x)2σ(x) dx

,

where p(x) = x, q(x) = 0, and σ(x) =
1

x
.

Computing R(u), we have

R(u) =

∫ 2

1

xu′(x)2 dx

∫ 2

1

u(x)2σ(x) dx

=

∫ 2

1

x(2x− 3)2 dx

∫ 2

1

[
(2− x)2(x− 1)2/x

]
dx

=
1/2

−11/4 + 4 ln 2

and since λ1 is the minimum Rayleigh quotient over all such test functions, then

λ1 ≤ 1/2

−11/4 + 4 ln 2
≈ 23.



Question 4. Find the solution of the exterior Dirichlet problem for a disk, that is find a bounded
solution to the problem:

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0, a < r < ∞, −π < θ < π

u(r, π) = u(r,−π) a < r < ∞

∂u

∂θ
(r, π) =

∂u

∂θ
(r,−π) a < r < ∞

u(a, θ) = f(θ) − π < θ < π.

Solution: A solution to Laplace’s equation in polar coordinates which satisfies the periodicity conditions
is given by

u(r, θ) = A0 +B0 log r +
∞∑

n=1

{
rn
(
An cosnθ +Bn sinnθ

)
+

1

rn
(
Cn cosnθ +Dn sinnθ

)}
,

and in order to satisfy the boundedness condition we need B0 = An = Bn = 0, for n = 1, 2, 3, . . . , so that

u(r, θ) = A0 +
∞∑

n=1

1

rn
(
Cn cosnθ +Dn sinnθ

)
.

Now, when r = a we have

f(θ) = u(a, θ) = A0 +
∞∑

n=1

1

an
(
Cn cosnθ +Dn sinnθ

)
,

where

A0 =
1

2π

∫ π

−π

f(φ) dφ,

Cn =
an

π

∫ π

−π

f(φ) cosnφdφ,

Dn =
an

π

∫ π

−π

f(φ) sinnφdφ

for n = 1, 2, 3 . . . .

Therefore

u(r, θ) =
1

2π

∫ π

−π

f(φ) dφ+
1

π

∞∑

n=1

(a
r

)n ∫ π

−π

f(φ)
{
cosnφ cosnθ + sinnφ sinnθ

}
dφ,

that is,

u(r, θ) =
1

2π

∫ π

−π

f(φ)

{
1 + 2

∞∑

n=1

(a
r

)n
cosn(θ − φ)

}
dφ.

We can actually sum the series to get a much simpler expression for u(r, θ). Let z =
a

r
ei(θ−φ), then

zn =
(a
r

)n
ein(θ−φ) =

(a
r

)n
[cosn(θ − φ) + i sinn(θ − φ)] ,

and

1 + 2

∞∑

n=1

(a
r

)n
cosn(θ − φ) = Re

(
1 + 2

∞∑

n=1

zn
)
.



Since |z| = a

r
< 1, then

1 + 2
∞∑

n=1

(a
r

)n
cosn(θ − φ) = Re

(
1 +

2z

1− z

)
= Re

(
1 + z

1− z

)
=

r2 − a2

a2 − 2ar cos(θ − φ) + r2
.

The solution to the exterior Dirichlet problem for the disk is therefore

u(r, θ) =
1

2π

∫ π

−π

(r2 − a2) f(φ)

a2 − 2ar cos(θ − φ) + r2
dφ,

for a < r < ∞, −π < θ < π.

Question 5. Find all functions φ for which u(x, t) = φ(x+ ct) is a solution of the heat equation

∂2u

∂x2
=

1

k

∂u

∂t

where k and c are constants.

Solution: If u(x, t) = φ(x+ ct) is a solution to the heat equation

∂2u

∂x2
=

1

k

∂u

∂t
,

let ξ = x+ ct, then from the chain rule we have

∂u

∂x
=

dφ

dξ

∂ξ

∂x
=

dφ

dξ
,

∂2u

∂x2
=

d

dξ

(
dφ

dξ

)
∂ξ

∂x
=

d2φ

dξ2
,

∂u

∂t
=

dφ

dξ

∂ξ

∂t
= c

dφ

dξ
.

Therefore, φ satisfies the ordinary differential equation

d2φ

dξ2
− c

k

dφ

dξ
= 0,

and the solution is given by
φ(ξ) = A+B e

c

k
ξ,

that is,
u(x, t) = A+B e

c

k
(x+ct)

where A and B are arbitrary constants.



Question 6. Consider torsional oscillations of a homogeneous cylindrical shaft. If ω(x, t) is the angular
displacement at time t of the cross section at x, then

∂2ω

∂t2
= a2

∂2ω

∂x2
0 < x < L, t > 0.

Solve this problem if

ω(x, 0) = f(x) 0 < x < L

∂ω

∂t
(x, 0) = 0 0 < x < L,

and the ends of the shaft are fixed elastically:

∂ω

∂x
(0, t)− αω(0, t) = 0 t > 0

∂ω

∂x
(L, t) + αω(L, t) = 0 t > 0

with α a positive constant.

Solution: Since the partial differential equation is linear and homogeneous and the boundary conditions
are linear and homogeneous, we can use separation of variables. Assuming a solution of the form

ω(x, t) = φ(x) ·G(t), 0 ≤ x ≤ L, t ≥ 0

and separating variables, we have two ordinary differential equations:

φ′′(x) + λφ(x) = 0, 0 ≤ x ≤ L, G′′(t) + λa2G(t) = 0, t > 0,

φ′(0)− αφ(0) = 0

φ′(L) + αφ(L) = 0

We use the Rayleigh quotient to show that λ > 0 for all eigenvalues λ.

Let λ be an eigenvalue of the Sturm Liouville problem, and let φ(x) be the corresponding eigenfunction,
then

−p(x)φ(x)φ′(x)

∣∣∣∣
L

0

= −φ(L)φ′(L) + φ(0)φ′(0) = α(φ(0)2 + φ(L)2) > 0,

and since q(x) = 0 ≤ 0 for all 0 ≤ x ≤ L, then

λ =

α(φ(0)2 + φ(L)2) +

∫ L

0

φ′(x)2 dx

∫ L

0

φ(x)2 dx

≥ 0

since p(x) = σ(x) = 1 for 0 ≤ x ≤ L.

Note that if λ = 0, then

α
(
φ(0)2 + φ(L)2

)
+

∫ L

0

φ′(x)2 dx = 0

implies that

α
(
φ(0)2 + φ(L)2

)
= 0 and

∫ L

0

φ′(x)2 dx = 0.

Since α > 0, this implies that φ(0) = 0 and φ(L) = 0; and since φ′ is continuous on [0, L], that φ′(x) = 0 for
0 ≤ x ≤ L. Therefore φ(x) is constant on [0, L], so that φ(x) = φ(0) = 0 for 0 < x < L, and λ = 0 is not an
eigenvalue, and all of the eigenvalues λ of this Sturm-Liouville problem satisfy λ > 0.



If λ > 0, then λ = µ2, where µ 6= 0, and the differential equation is φ′′ + µ2φ = 0 with general solution

φ(x) = A cosµx+B sinµx and φ′(x) = −µA sinµx+ µB cosµx

for 0 ≤ x ≤ L.

From the first boundary condition

φ′(0)− αφ(0) = µB − αA = 0,

and A =
µB

α
, and the solution is now

φ(x) = B(µ cosµx+ α sinµx).

From the second boundary condition

φ′(L) + αφ(L) = B
[
−µ2 sinµL+ αµ cosµL+ αµ cosµL+ α2 sinµL

]
= 0,

that is,
B
[
(α2 − µ2) sinµL+ 2αµ cosµL

]
= 0,

and the boundary value problem has a nontrivial solution if and only if

tanµL =
2αµ

µ2 − α2
,

that is, if and only if

tan
√
λL =

2α
√
λ

λ− α2
.

In order to determine the eigenvalues we sketch the graphs of the functions

f(µ) = tanµL and g(µ) =
2αµ

µ2 − α2

for µ > 0.

Note that for µ > 0, we have

g(µ) =
2αµ

µ2 − α2
= α

[
1

µ+ α
+

1

µ− α

]
,

so that

g′(µ) = −α

[
1

(µ+ α)2
+

1

(µ− α)2

]
< 0

and g is decreasing on the interval (0, α) and on the interval (α,∞) and the line µ = α is a vertical asymptote
to the graph. The graphs of g and f are shown below.

2
α

µ0 

y
y  =

µy =  tan

α

L
µ2_

µα
2



From the figure it is clear that there are an infinite number of distinct solutions µn to the equation

tanµL =
2αµ

µ2 − α2
,

and the eigenvalues are λn = µ2
n, for n ≥ 1, while the corresponding eigenfunctions are

φn(x) = µn cosµnx+ α sinµnx, 0 ≤ x ≤ L

for n ≥ 1.

The corresponding solutions to the time equation are

Gn(t) = an cosµnat+ bn sinµnat, t ≥ 0

and from the superposition principle, the function

ω(x, t) =

∞∑

n=1

φn(x) ·Gn(t) =

∞∑

n=1

(µn cosµnx+ α sinµnx) (an cosµnat+ bn sinµnat)

satisfies the partial differential equation and the boundary conditions.

Since the spatial problem is a regular Sturm-Liouville problem, then the eigenfunctions are orthogonal on
the interval [0, L], and we use this fact to satisfy the initial conditions

ω(x, 0) = f(x) =
∞∑

n=1

anφn(x) and
∂ω

∂t
(x, 0) =

∞∑

n=1

bnµnφn(x) = 0,

and the generalized Fourier coefficients are given by

an =

∫ L

0

f(x)φn(x) dx

∫ L

0

φn(x)
2 dx

and bn = 0

for n ≥ 1.

Therefore the solution is

ω(x, t) =

∞∑

n=1

anφn(x) cosµnat, 0 ≤ x ≤ L, t ≥ 0

where

an =

∫ L

0

f(x)φn(x) dx

∫ L

0

φn(x)
2 dx

for n ≥ 1.



Question 7. Use D’Alembert’s solution of the wave equation to solve the initial value - boundary value
problem:

∂2u

∂x2
=

1

c2
∂2u

∂t2
−∞ < x < ∞, t > 0

u(x, 0) = f(x) −∞ < x < ∞

∂u

∂t
(x, 0) = g(x) −∞ < x < ∞

with f(x) = 0 and g(x) =
x

1 + x2
.

Solution: The initial value - boundary value problem for the displacement of an infinite vibrating string is

∂2u

∂x2
=

1

c2
∂2u

∂t2
−∞ < x < ∞, t > 0

u(x, 0) = f(x) −∞ < x < ∞

∂u

∂t
(x, 0) = g(x) −∞ < x < ∞

and the general solution, that is, d’Alembert’s solution to the wave equation, is

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x+ct

x−ct

g(s) ds

for −∞ < x < ∞, t > 0, and since f(x) = 0 for −∞ < x < ∞, then

u(x, t) =
1

2c

∫ x+ct

x−ct

g(s) ds

=
1

2c

∫ x+ct

x−ct

s

1 + s2
ds.

The solution to the wave problem is therefore

u(x, t) =
1

4c

[
ln(1 + (x+ ct)2)− ln(1 + (x− ct)2)

]
=

1

4c
ln

[
1 + (x+ ct)2

1 + (x− ct)2

]
,

for −∞ < x < ∞, t > 0.

Question 8. Obtain the expansion

eax =
sinhπa

π

∞∑

n=−∞

(−1)n

a2 + n2
(a cosnx− n sinnx)

valid for all real numbers a 6= 0, and all −π < x < π.

Solution: Let
f(x) = eax, −π < x < π, f(x+ 2π) = f(x), a 6= 0,

then

a0 =
1

2π

∫ π

−π

eax dx =
sinhπa

πa
.



For n ≥ 1,

an =
1

π

∫ π

−π

eax cosnx dx = 2a sinhπa
(−1)n

π(n2 + a2)
,

bn =
1

π

∫ π

−π

eax sinnx dx = −2n sinhπa
(−1)n

π(n2 + a2)
,

so the Fourier series is for f(x) on the interval −π < x < π is given by

eax =
2

π
sinhπa

{
1

2a
+

∞∑

n=1

(−1)n

n2 + a2
(a cosnx− n sinnx)

}
.

Therefore,

eax =
sinhπa

π

∞∑

n=1

(−1)n

n2 + a2
(a cosnx− n sinnx) +

sinhπa

π

1

a
+

sinhπa

π

∞∑

n=1

(−1)n

n2 + a2
(a cosnx− n sinnx),

and replacing n by −n in the first sum, we have

eax =
sinhπa

π

−1∑

n=−∞

(−1)n

n2 + a2
(a cosnx− n sinnx) +

sinhπa

π

1

a
+

sinhπa

π

∞∑

n=1

(−1)n

n2 + a2
(a cosnx− n sinnx),

that is,

eax =
sinhπa

π

∞∑

n=−∞

(−1)n

n2 + a2
(a cosnx− n sinnx)

for −π < x < π.



Question 9. Consider the regular Sturm-Liouville problem

(
x2X ′

)′
+ λX = 0 1 < x < e

X(1) = 0

X(e) = 0

(a) Show that the substitution

X =
Y√
x

transforms this problem into the following problem

x
(
xY ′

)′
+ µY = 0 1 < x < e

Y (1) = 0

Y (e) = 0

where µ = λ− 1

4
.

(b) Let x = et and Ŷ (t) = Y (et), show that this transforms the problem in part (a) into the problem

d2Ŷ

dt2
+ µ Ŷ = 0 0 < t < 1

Ŷ (0) = 0

Ŷ (1) = 0.

(c) Find the eigenvalues and eigenvectors for the problem in part (b), and from these, the eigenvalues
and eigenfunctions in part (a), and finally obtain the eigenvalues and eigenfunctions for the original
Sturm-Liouville problem.

Solution:

(a) Let

X =
Y

x
1
2

,

then

X ′ =
Y ′

x
1
2

− 1
2

Y

x
3
2

,

so that

x2 X ′ = x
3
2 Y ′ − 1

2 x
1
2Y

= x
1
2 xY ′ − 1

2 x
1
2 Y.

Differentiating again and simplifying, we have

(
x2 X ′

)′
= x−

1
2

{
x (xY ′)

′ − 1
4 Y
}
.



Therefore,
(
x2 X ′

)′
+ λX = x−

1
2

{
x (xY ′)

′
+ µY

}

where µ = λ− 1
4 , and the original problem is transformed into the problem:

x (xY ′)
′
+ µY = 0, 1 < x < e

Y (1) = 0

Y (e) = 0

where µ = λ− 1
4 .

(b) Now let x = et and Ŷ (t) = Y (et), then

dY

dx
=

dŶ

dt

dt

dx
=

1

x

dŶ

dt
,

that is,

x
dY

dx
=

dŶ

dt
.

Also,

d

dx

(
x
dY

dx

)
=

d

dt

(
dŶ

dt

)
dt

dx
=

1

x

d2Ŷ

dt2
= e−t d

2Ŷ

dt2
,

and therefore
d

dx

(
x
dY

dx

)
+

µ

x
Y = 0 for 1 < x < e

if and only if

e−t d
2Ŷ

dt2
+ e−tµ Ŷ = 0 for 0 < t < 1

So we have the equivalent regular Sturm-Liouville problem

d2Ŷ

dt2
+ µ Ŷ = 0, 0 < t < 1

Ŷ (0) = 0

Ŷ (1) = 0

with eigenvalues µn = n2π2, and eigenfunctions

Ŷn(t) = sinnπt, 0 < t < 1

for n ≥ 1.

(c) The eigenvalues for the original problem are therefore

λn = n2π2 + 1
4 ,

and the corresponding eigenfunctions are

Xn(x) =
1√
x

sin(nπ log x), 1 < x < e

for n ≥ 1.



Question 10. Show that if |a| < 1, then

(a)
∞∑

n=1
an cosnx =

a cosx− a2

1− 2a cosx+ a2
for −π < x < π,

(b)
∞∑

n=1
an sinnx =

a sinx

1− 2a cosx+ a2
for −π < x < π,

Solution: Let z = a eix, then |z| = |a| < 1, so the geometric series

∞∑

n=0

aneinx

converges and

∞∑

n=0

aneinx =
1

1− aeix
=

1

(1− a cosx)− ia sinx
=

1− a cosx

1− 2a cosx+ a2
+ i

a sinx

1− 2a cosx+ a2
.

Since
∞∑

n=0

aneinx = 1 +

∞∑

n=1

an cosnx+ i

∞∑

n=1

an sinnx,

then

1 +
∞∑

n=1

an cosnx+ i
∞∑

n=1

an sinnx =
1− a cosx

1− 2a cosx+ a2
+ i

a sinx

1− 2a cosx+ a2
,

and equating real and imaginary parts, we have

∞∑

n=1

an cosnx =
1− a cosx

1− 2a cosx+ a2
− 1 =

a cosx− a2

1− 2a cosx+ a2
,

and
∞∑

n=1

an sinnx =
a sinx

1− 2a cosx+ a2

for −π < x < π.

Question 11. Find the Fourier integral representation of the function

f(x) =

{
1− cosx if − π

2 < x < π
2 ,

0 otherwise.

Solution: The Fourier integral representation of f(x) is given by

f(x) ∼
∫ ∞

0

(A(ω) cosωx+B(ω) sinωx) dω,

where

A(ω) =
1

π

∫ ∞

−∞
f(t) cosωt dt and B(ω) =

1

π

∫ ∞

−∞
f(t) sinωt dt.

Since f(x) is an even function, then B(ω) = 0 for all ω.



Also, since f(x) is even and f(x) = 0 for |x| ≥ π
2 , then for all ω 6= 0 and ω 6= ±1, we have

A(ω) =
2

π

∫ π/2

0

(1− cos t) cosωt dt

=
2

π

∫ π/2

0

cosωt dt− 2

π

∫ π/2

0

cos t cosωt dt

=
2

π

sin(ωπ/2)

ω
− 1

π

∫ π/2

0

[cos(1− ω)t+ cos(1 + ω)t] dt

=
2

π

sin(ωπ/2)

ω
− 1

π

sin(1− ω)t

1− ω

∣∣∣∣
π/2

0

− 1

π

sin(1 + ω)t

1 + ω

∣∣∣∣
π/2

0

=
2

π

sin(ωπ/2)

ω
− 1

π

sin((1− ω)π/2)

1− ω
− 1

π

sin((1 + ω)π/2)

1 + ω

=
2

π

sin(ωπ/2)

ω
− cos(ωπ/2)

π

[
1

1− ω
+

1

1 + ω

]

=
2

π

[
sin(ωπ/2)

ω
− cos(ωπ/2)

1− ω2

]
,

so that

A(ω) =
2

π

[
sin(ωπ/2)

ω
− cos(ωπ/2)

1− ω2

]

for ω 6= 0,±1.

If ω = 0, then

A(0) =
2

π

∫ π/2

0

(1− cos t) dt =
2

π

[π
2
− sin(π/2)

]
= 1− 2

π
.

If ω = ±1, then

A(±1) =
2

π

sin(±π/2)

±1
− 2

π

∫ π/2

0

cos2 t dt =
2

π
− 2

π

∫ π/2

0

(
1 + cos 2t

2

)
dt =

2

π
− 1

2
.

Note that A(w) is continuous for all ω.

From Dirichlet’s convergence theorem, the integral

2

π

∫ ∞

0

[
sin(ωπ/2)

ω
− cos(ωπ/2)

1− ω2

]
cosωxdω

converges to 1− cosx for all |x| < π
2 , converges to 0 for all |x| > π

2 , and converges to 1
2 for x = ±π

2 .

Thus, if we redefine f(±π/2) = 1
2 , then the Fourier integral representation of f(x) i s given by

2

π

∫ ∞

0

[
sin(ωπ/2)

ω
− cos(ωπ/2)

1− ω2

]
cosωxdω = f(x) =





1− cosx for |x| < π
2

0 for |x| > π
2

1
2 for x = ±π

2 .



Question 12. Find the Fourier integral representation of the function

f(x) =





x if − 1 < x < 1,

2− x if 1 < x < 2,

−2− x if − 2 < x < −1,

0 otherwise.

Solution: The graph of f(x) is shown below and it is easy to see that the function f(x) is

an odd function.

1

2 −1

−1

y

x1 20−

Therefore, A(ω) = 0 for all ω, and

B(ω) =
2

π

∫ 2

0

f(t) sinωt dt =
2

π

∫ 1

0

t sinωt dt+
2

π

∫ 2

1

(2− t) sinωt dt.

Therefore, integrating by parts, we have

B(ω) =
2

π

[
−t

ω
cosωt

∣∣∣∣
1

0

+

∫ 1

0

cosωt

ω

]
+

2

π

[
−2 + t

ω
cosωt

∣∣∣∣
2

1

−
∫ 2

1

cosωt

ω
dt

]

=
2

π

[
−cosω

ω
+

sinωt

ω2

∣∣∣∣
1

0

]
+

2

π

[
cosω

ω
− sinωt

ω2

∣∣∣∣
2

1

]

=
2

π

[
2 sinω

ω2
− sin 2ω

ω2

]

=
2

π

(
2 sinω − sin 2ω

ω2

)
,

that is,

B(ω) =
2

π

(
2 sinω − sin 2ω

ω2

)

for all ω 6= 0.

If ω = 0, then

B(0) =
2

π

∫ 2

0

f(t) sin(0 · t) dt = 0.

Since f(x) is continuous everywhere, from Dirichlet’s convergence theroem, the Fourier sine integral converges
to f(x) for all x, and therefore

2

π

∫ ∞

0

(
2 sinω − sin 2ω

ω2

)
sinωxdω = f(x)

for all x ∈ R.



Question 13. Let

f(x) =

{
x if |x| < 1,

0 otherwise.

(a) Plot the function f(x) and find its Fourier transform.

(b) If f̂ is real valued, plot it; otherwise plot
∣∣ f̂
∣∣.

Solution:

(a) The graph of the function f(x) is plotted below.

1

1

−1

y

x10

−

The Fourier transform of f(x) is computed as

f̂(ω) =
1

2π

∫ ∞

−∞
f(t)e−iωt dt =

1

2π

∫ 1

−1

te−iωt dt

=
1

2π

[
− t

iω
e−iωt

∣∣1
−1

+
1

iω

∫ 1

−1

e−iωt dt

]

=
1

2π

[
− 1

iω

(
e−iω + eiω

)
− 1

(iω)2
e−iωt

∣∣∣∣
1

−1

]

=
2i

2π

[(
eiω + e−iω

2ω

)
−
(
eiω − e−iω

2iω2

)]

=
i

π

(
ω cosω − sinω

w2

)
,

so that

f̂(ω) =
i

π

(
ω cosω − sinω

w2

)

for all ω 6= 0.

If ω = 0, then

f̂(0) =
1

2π

∫ 1

−1

t dt =
1

2π

t2

2

∣∣∣∣
1

−1

= 0,

and from L’Hospital’s rule, we see that lim
ω→0

f̂(ω) = 0 also, so that f̂(ω) is continuous at each ω.

(b) Since

f̂(ω) =
i

π

(
ω cosω − sinω

w2

)
,

then ∣∣∣f̂(ω)
∣∣∣ = 1

π

∣∣∣∣
sinω − ω cosω

ω2

∣∣∣∣
for all ω.



Note that the zeros of the function g(ω) = sinω − ω cosω are precisely the roots of the equation

tanω = ω, so the graph of
∣∣∣f̂(ω)

∣∣∣ looks something like the figure below.

y

x

Question 14. Find the Fourier cosine transform of

f(x) =

{
1− x if 0 < x < 1,

0 if x ≥ 1.

and write f(x) as an inverse cosine transform. Use a known Fourier transform and the fact that if f(x), x ≥ 0,
is the restriction of an even function fe, then

Fc(f)(ω) = 2F(fe)(ω)

for all ω ≥ 0.

Solution: The Fourier cosine transform of the function f is given by

f̂c(ω) =
2

π

∫ ∞

0

f(t) cosωt dt =
2

π

∫ 1

0

(1− t) cosωt dt,

and this is the same as the Fourier transform of the even extension fe of f to the whole real line R.

In this case however, we can evaluate the last integral directly by integration by parts:

∫ 1

0

(1− t) cosωt dt =

∫ 1

0

cosωt dt−
∫ 1

0

t cosωt dt

=
sinωt

ω

∣∣∣∣
1

0

−
[
t · sinωt

ω

∣∣∣∣
1

0

− 1

ω

∫ 1

0

sinωt dt

]

=
sinω

ω
− sinω

ω
+

1

ω

[
− 1

ω
cosωt

∣∣∣∣
1

0

]

=
1− cosω

ω2
,

and therefore

f̂c(ω) =
2

π
· 1− cosω

ω2

for ω > 0.

Knowing that fc is absolutely integrable implies that f̂c is continuous at ω = 0, and we have

f̂c(0) = lim
ω→0+

2

π
· 1− cosω

ω2
=

2

π
· lim
ω→0+

sinω

2ω
=

1

π

by L’Hospital’s rule.



Therefore, we have

f̂c(ω) =





2

π
· 1− cosω

ω2
for ω > 0

1

π
for ω = 0.

Since fe is continuous for all x ∈ R, from Dirichlet’s theorem the inverse Fourier cosine transform of f̂c is
given by

2

π

∫ ∞

0

1− cosω

ω2
· cosωxdω =




1− x for 0 ≤ x < 1

0 for x ≥ 1.

Question 15. Find the Fourier sine transform of

f(x) =
x

1 + x2
, x > 0,

and write f(x) as an inverse sine transform. Use a known Fourier transform and the fact that if f(x), x ≥ 0,
is the restriction of an odd function fo, then

Fs(f)(ω) = −2iF(fo)(ω)

for all ω ≥ 0.

Solution: We can find the Fourier sine transform of the given function using the suggested method, or we
can find it directly. To do this, we consider the function

g(x) = e−x, x > 0

with Fourier sine transform given by

ĝs(ω) =
2

π

∫ ∞

0

e−t sinωt dt

and we can evaluate this integral by integrating by parts:

∫ ∞

0

e−t sinωt dt = −e−t

ω

∣∣∣∣
∞

0

− 1

ω

∫ ∞

0

e−t cosωt dt

=
1

ω
− 1

ω

[
e−t · sinωt

ω

∣∣∣∣
∞

0

+
1

ω

∫ ∞

0

e−t sinωt dt

]

=
1

ω
− 1

ω2

∫ ∞

0

e−t sinωt dt

so that (
1 +

1

ω2

)∫ ∞

0

e−t sinωt dt =
1

ω
.

Therefore, ∫ ∞

0

e−t sinωt dt =
ω

1 + ω2

for ω ≥ 0, so that

ĝs(ω) =
2

π
· ω

1 + ω2

for ω ≥ 0.



Taking the inverse Fourier sine transform of this, we have

g(x) =

∫ ∞

0

ĝs(ω) sinωxdω =
2

π

∫ ∞

0

ω

1 + ω2
sinωxdω,

that is,

e−ω = g(ω) =
2

π

∫ ∞

0

x

1 + x2
sinωxdx,

and

f̂s(ω) =
2

π

∫ ∞

0

x

1 + x2
sinωxdx = g(ω) = e−ω

for ω ≥ 0.

From the above, we can write f(x) as an inverse Fourier sine transform:

f(x) =
x

1 + x2
=

∫ ∞

0

e−ω sinωxdω

for x > 0.

Question 16. Use the Fourier transform to solve the heat flow problem in an infinite rod

∂u

∂t
= 10

∂2u

∂x2
, −∞ < x < ∞, t > 0

u(x, 0) =

{
2 for − π ≤ x ≤ π

0 otherwise,

and express the solution as the difference of two error functions.

Solution: The solution is the convolution

u(x, t) = f ∗G (x, t)

where

G(x, t) =
1√
4πkt

e−
x2

4kt

is the heat kernel, or Gaussian kernel, so that

u(x, t) =
1√
40πt

∫ π

−π

2e−
(x−s)2

40t ds

for −∞ < x < ∞, t > 0.

Making the substitution

z =
x− s√
40t

and dz = − 1√
40t

ds,

when s = −π, then z =
x+ π√
40t

, and when s = π, then z =
x− π√
40t

, so that

u(x, t) =
2√
40πt

(−
√
40t)

∫ x−π√
40t

x+π√
40t

e−z2

dz

=
2√
π



∫ x+π√

40t

0

e−t2 dt−
∫ x−π√

40t

0

e−t2 dt




= erf

(
x+ π√
40t

)
− erf

(
x− π√
40t

)
.



Therefore

u(x, t) = erf

(
x+ π√
40t

)
− erf

(
x− π√
40t

)

for −∞ < x < ∞, t > 0, where

erf(x) =
2√
π

∫ x

0

e−z2

dz

is the error function.

Question 17. Find the solution to the initial value problem

∂u

∂t
+ 5

∂u

∂x
= e3t, −∞ < x < ∞, t ≥ 0

u(x, 0) = e−x2

, −∞ < x < ∞

using the method of characteristics.

Solution: Let
dx

dt
= 5,

then along the characteristic curve x(t) = 5t+ a, the partial differential equation becomes

du

dt
=

∂u

∂t
+

∂u

∂x

dx

dt
= e3t,

so that

u(x(t), t) =
1

3
e3t +K

where K is a constant, and K = u(x(0), 0)− 1

3
, so that

u(x(t), t) =
1

3
e3t + u(x(0), 0)− 1

3
=

1

3
e3t + u(a, 0)− 1

3
=

1

3
e3t + e−a2 − 1

3
.

Given the point (x, t), let x = 5t+ a be the unique characteristic curve passing through this point, then

u(x, t) =
1

3
e3t + e−a2 − 1

3
=

1

3
e3t + e−(x−5t)2 − 1

3
.


