

Math 300

Solutions to Midterm Examination II

Question 2. Consider the regular Sturm-Liouville problem

$$
\begin{aligned}
\phi^{\prime \prime}+\lambda^{2} \phi & =0 \quad 0 \leq x \leq \pi \\
\phi^{\prime}(0) & =0 \\
\phi(\pi) & =0
\end{aligned}
$$

(a) Find the eigenvalues λ_{n}^{2} and the corresponding eigenfunctions ϕ_{n} for this problem.
(b) Show directly, by integration, that eigenfunctions corresponding to distinct eigenvalues are orthogonal.
(c) Given the function $f(x)=\frac{\pi^{2}-x^{2}}{2}, \quad 0<x<\pi$, find the eigenfunction expansion for f.
(d) Show that

$$
\frac{\pi^{3}}{32}=1-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\frac{1}{9^{3}}-+\cdots
$$

Solution:

(a) We consider the cases where $\lambda=0$ and $\lambda \neq 0$ separately.

If $\lambda=0$, the general solution to the equation

$$
\phi^{\prime \prime}+\lambda^{2} \phi=0
$$

in this case is

$$
\phi(x)=c_{1} x+c_{2},
$$

and differentiating,

$$
\phi^{\prime}(x)=c_{1} .
$$

The condition $\phi^{\prime}(0)=0$ implies that $c_{1}=0$, while the condition $\phi(\pi)=0$ implies that $c_{2}=0$, so there are no non-trivial solutions in this case.
If $\lambda \neq 0$, the general solution to the equation

$$
\phi^{\prime \prime}+\lambda^{2} \phi=0
$$

in this case is

$$
\phi(x)=c_{1} \cos \lambda x+c_{2} \sin \lambda x
$$

and differentiating, we get

$$
\phi^{\prime}(x)=-c_{1} \lambda \sin \lambda x+c_{2} \lambda \cos \lambda x
$$

The condition $\phi^{\prime}(0)=0$ implies that $c_{2} \lambda=0$, and so $c_{2}=0$. The solution is then

$$
\phi(x)=c_{1} \cos \lambda x
$$

and the condition $\phi(\pi)=0$ implies that $\cos \lambda \pi=0$, and therefore the eigenvalues are

$$
\lambda^{2}=\lambda_{n}^{2}=\left(\frac{2 n-1}{2}\right)^{2},
$$

for $n=1,2,3, \ldots$ The corresponding eigenfunctions are

$$
\phi_{n}(x)=\cos \frac{(2 n-1)}{2} x
$$

for $n=1,2,3, \ldots$.
(b) For $n=1,2,3, \ldots$, let $\lambda_{n}=\frac{2 n-1}{2}$, if $m \neq n$, we have

$$
\begin{aligned}
\int_{0}^{\pi} \phi_{m}(x) \phi_{n}(x) d x & =\int_{0}^{\pi} \cos \lambda_{m} x \cos \lambda_{n} x d x \\
& =\frac{1}{2} \int_{0}^{\pi}\left\{\cos \left(\lambda_{m}+\lambda_{n}\right) x+\cos \left(\lambda_{m}-\lambda_{n}\right) x\right\} d x \\
& =\left.\frac{1}{2\left(\lambda_{m}+\lambda_{n}\right)} \sin \left(\lambda_{m}+\lambda_{n}\right) x\right|_{0} ^{\pi}+\left.\frac{1}{2\left(\lambda_{m}-\lambda_{n}\right)} \sin \left(\lambda_{m}-\lambda_{n}\right) x\right|_{0} ^{\pi} \\
& =\frac{1}{2\left(\lambda_{m}+\lambda_{n}\right)} \sin \left(\lambda_{m}+\lambda_{n}\right) \pi+\frac{1}{2\left(\lambda_{m}-\lambda_{n}\right)} \sin \left(\lambda_{m}-\lambda_{n}\right) \pi \\
& =0
\end{aligned}
$$

since $\left(\lambda_{m}+\lambda_{n}\right) \pi=(m+n-1) \pi$ and $\left(\lambda_{m}-\lambda_{n}\right) \pi=(m-n) \pi$.
(c) Writing

$$
f(x)=\frac{\pi^{2}-x^{2}}{2} \sim \sum_{n=1}^{\infty} c_{n} \phi_{n}(x)
$$

the coefficients c_{n} in the eigenfunction expansion are found using the orthogonality of the eigenfunctions on $[0, \pi]$.

$$
\begin{aligned}
c_{n} & =\frac{2}{\pi} \int_{0}^{\pi}\left(\frac{\pi^{2}-x^{2}}{2}\right) \cos \lambda_{n} x d x \\
& =\frac{2}{\pi} \frac{\sin \lambda_{n} \pi}{\lambda_{n}^{3}}=\frac{16}{\pi(2 n-1)^{3}} \sin \frac{(2 n-1)}{2} \pi \\
& =\frac{16(-1)^{n+1}}{\pi(2 n-1)^{3}}
\end{aligned}
$$

Therefore, the eigenfunction expansion of f is given by

$$
\frac{\pi^{2}-x^{2}}{2} \sim \frac{16}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{3}} \cos \frac{(2 n-1)}{2} x
$$

for $0 \leq x \leq \pi$.
(d) For this particular problem, the eigenfunction expansion is actually the Fourier cosine series for f. Since the function f is piecewise smooth on the interval $[0, \pi]$ and since the even extension of f to $[-\pi, \pi]$ is continuous at $x=0$, then by Dirichlet's theorem the series converges to

$$
f(0)=\frac{\pi^{2}}{2}
$$

when $x=0$, and therefore

$$
\frac{\pi^{3}}{32}=1-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\frac{1}{9^{3}}-+\cdots
$$

Question 3. Solve the following boundary value problem for the steady-state temperature $u(x, y)$ in a thin plate in the shape of a semi-infinite strip when heat transfer to the surroundings at temperature zero takes place at the faces of the plate:

$$
\begin{array}{rlrl}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}-b u & =0, & & 0<x<\infty, \quad 0<y<1 \\
\frac{\partial u}{\partial x}(0, y) & =0, & & 0<y<1 \\
u(x, 0) & =0, & & 0<x<\infty \\
u(x, 1) & =f(x), & 0<x<\infty
\end{array}
$$

where b is a positive constant and

$$
f(x)= \begin{cases}1 & 0<x<a \\ 0 & x>a\end{cases}
$$

Solution: We try separation of variables. If we assume that

$$
u(x, y)=X(x) Y(y)
$$

then the partial differential equation becomes

$$
X^{\prime \prime} Y+X Y^{\prime \prime}-b X Y=0
$$

that is,

$$
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}+b=p \quad(\text { constant })
$$

and we obtain the two ordinary differential equations

$$
\begin{aligned}
& \begin{array}{l}
X^{\prime \prime}-p X=0 \quad 0<x<\infty \quad Y^{\prime \prime}+(p-b) Y=0, \quad 0<y<1 \\
\quad Y(0)=0 \\
X^{\prime}(0)=0 \\
|X(x)| \quad \text { bounded as } x \rightarrow \infty
\end{array}
\end{aligned}
$$

We solve the X-equation first, and consider three cases:
(i) If $p=0$, then the general solution to the equation $X^{\prime \prime}=0$ is

$$
X(x)=c_{1} x+c_{2}
$$

and the condition $X^{\prime}(0)=0$ implies that $c_{1}=0$, the solution is therefore $X(x)=1$.
(ii) If $p>0$, say $p=\mu^{2}$, then the general solution to the equation $X^{\prime \prime}-\mu^{2} X=0$ is

$$
X(x)=c_{1} \cosh \mu x+c_{2} \sinh \mu x
$$

and the condition $X^{\prime}(0)=0$ implies $c_{2}=0$, while the condition $|X(x)|$ bounded as $x \rightarrow \infty$ implies that $c_{1}=0$. There are no non-trivial solutions in this case.
(iii) If $p<0$, say $p=-\lambda^{2}$, then the general solution to the equation $X^{\prime \prime}+\lambda^{2} X=0$ is

$$
X(x)=c_{1} \cos \lambda x+c_{2} \sin \lambda x
$$

the condition $X^{\prime}(0)=0$ implies that $c_{2}=0$, and the solution is $X(x)=c_{1} \cos \lambda x$, which is bounded as $x \rightarrow \infty$.

Therefore, for any $\lambda \geq 0$ the function

$$
X_{\lambda}(x)=\cos \lambda x
$$

satisfies the differential equation, the boundary condition, and the boundedness condition. The corresponding equation for Y is given by

$$
\begin{array}{r}
Y^{\prime \prime}-\left(\lambda^{2}+b\right) Y=0 \\
Y(0)=0
\end{array}
$$

and has general solution

$$
Y(y)=c_{1} \sinh \left((1-y) \sqrt{\lambda^{2}+b}\right)+c_{2} \sinh \left(y \sqrt{\lambda^{2}+b}\right) .
$$

Now, the condition $Y(0)=0$ implies that $c_{1}=0$, and the solutions are

$$
Y_{\lambda}(y)=\sinh \left(y \sqrt{\lambda^{2}+b}\right) .
$$

Using the superposition principle, we write

$$
u(x, y)=\int_{0}^{\infty} A(\lambda) \cos \lambda x \sinh \left(y \sqrt{\lambda^{2}+b}\right) d \lambda
$$

and $u(x, 1)=f(x)$ implies that

$$
\begin{aligned}
A(\lambda) \sinh \sqrt{\lambda^{2}+b} & =\frac{2}{\pi} \int_{0}^{\infty} f(x) \cos \lambda x d x \\
& =\frac{2}{\pi} \int_{0}^{a} \cos \lambda x d x \\
& =\frac{2}{\pi \lambda} \sin \lambda a
\end{aligned}
$$

Therefore,

$$
u(x, y)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \lambda a \cos \lambda x \sinh \left(y \sqrt{\lambda^{2}+b}\right)}{\lambda \sinh \sqrt{\lambda^{2}+b}} d \lambda
$$

for $0<x<\infty, \quad 0<y<1$.

Question 1. Find the solution of the exterior Dirichlet problem for a disk, that is find a bounded solution to the problem:

$$
\begin{aligned}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} & =0, & & a<r<\infty, \quad-\pi<\theta<\pi \\
u(r, \pi) & =u(r,-\pi) & & a<r<\infty \\
\frac{\partial u}{\partial \theta}(r, \pi) & =\frac{\partial u}{\partial \theta}(r,-\pi) & & a<r<\infty \\
u(a, \theta) & =f(\theta) & & -\pi<\theta<\pi
\end{aligned}
$$

Solution: A solution to Laplace's equation in polar coordinates which satisfies the periodicity conditions is given by

$$
u(r, \theta)=A_{0}+B_{0} \log r+\sum_{n=1}^{\infty}\left\{r^{n}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right)+\frac{1}{r^{n}}\left(C_{n} \cos n \theta+D_{n} \sin n \theta\right)\right\}
$$

and in order to satisfy the boundedness condition we need $B_{0}=A_{n}=B_{n}=0$, for $n=1,2,3, \ldots$, so that

$$
u(r, \theta)=A_{0}+\sum_{n=1}^{\infty} \frac{1}{r^{n}}\left(C_{n} \cos n \theta+D_{n} \sin n \theta\right)
$$

Now, when $r=a$ we have

$$
f(\theta)=u(a, \theta)=A_{0}+\sum_{n=1}^{\infty} \frac{1}{a^{n}}\left(C_{n} \cos n \theta+D_{n} \sin n \theta\right),
$$

where

$$
\begin{aligned}
A_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\phi) d \phi \\
C_{n} & =\frac{a^{n}}{\pi} \int_{-\pi}^{\pi} f(\phi) \cos n \phi d \phi \\
D_{n} & =\frac{a^{n}}{\pi} \int_{-\pi}^{\pi} f(\phi) \sin n \phi d \phi
\end{aligned}
$$

for $n=1,2,3 \ldots$.
Therefore

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\phi) d \phi+\frac{1}{\pi} \sum_{n=1}^{\infty}\left(\frac{a}{r}\right)^{n} \int_{-\pi}^{\pi} f(\phi)\{\cos n \phi \cos n \theta+\sin n \phi \sin n \theta\} d \phi
$$

that is,

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\phi)\left\{1+2 \sum_{n=1}^{\infty}\left(\frac{a}{r}\right)^{n} \cos n(\theta-\phi)\right\} d \phi
$$

Now let $z=\frac{a}{r} e^{i(\theta-\phi)}$, then

$$
z^{n}=\left(\frac{a}{r}\right)^{n} e^{i n(\theta-\phi)}=\left(\frac{a}{r}\right)^{n}[\cos n(\theta-\phi)+i \sin n(\theta-\phi)]
$$

and

$$
1+2 \sum_{n=1}^{\infty}\left(\frac{a}{r}\right)^{n} \cos n(\theta-\phi)=\operatorname{Re}\left(1+2 \sum_{n=1}^{\infty} z^{n}\right)
$$

Since $|z|=\frac{a}{r}<1$, then

$$
1+2 \sum_{n=1}^{\infty}\left(\frac{a}{r}\right)^{n} \cos n(\theta-\phi)=\operatorname{Re}\left(1+\frac{2 z}{1-z}\right)=\operatorname{Re}\left(\frac{1+z}{1-z}\right)=\frac{r^{2}-a^{2}}{a^{2}-2 a r \cos (\theta-\phi)+r^{2}} .
$$

The solution to the exterior Dirichlet problem for the disk is therefore

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\left(r^{2}-a^{2}\right) f(\phi)}{a^{2}-2 a r \cos (\theta-\phi)+r^{2}} d \phi,
$$

for $a<r<\infty, \quad-\pi<\theta<\pi$.

