Math 300

Solutions to Midterm Examination I1

Question 2. Consider the regular Sturm-Liouville problem
¢+ X =0 0<z<nm
¢'(0)=0
¢(m) =0

(a) Find the eigenvalues A2 and the corresponding eigenfunctions ¢,, for this problem.

(b) Show directly, by integration, that eigenfunctions corresponding to distinct eigenvalues are orthogonal.

2 _ .2
(¢) Given the function f(x) = T 3 ’ , 0 <z <m, find the eigenfunction expansion for f.
(d) Show that
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SOLUTION:

(a) We consider the cases where A = 0 and A # 0 separately.

If A =0, the general solution to the equation

"+ N =0
in this case is
(b(x) =T + C2,
and differentiating,
¢'(x) = c1.
The condition ¢’(0) = 0 implies that ¢; = 0, while the condition ¢(7) = 0 implies that c; = 0, so there
are no non-trivial solutions in this case.

If A #£ 0, the general solution to the equation
¢l/ + )\2¢ =0
in this case is
() = c1 cos Az + co sin Az,

and differentiating, we get
@' () = —c1Asin A\x + co\ cos Ax.

The condition ¢'(0) = 0 implies that co A = 0, and so ¢a = 0. The solution is then
o(x) = ¢1 cos Az,
and the condition ¢(7) = 0 implies that cos A\w = 0, and therefore the eigenvalues are

102
A2 =22 = (2n2 1) 7
forn =1,2,3,.... The corresponding eigenfunctions are

¢n () = cos %7_1)@

forn=1,2,3,... .



(b) Forn=1,2,3,..., let A\, , if m # n, we have

/ qu(a:)¢n(x)dx:/ COS A\ & COS A\ @ A
0 0

1 s
5 / {cos(Am + A\n)x + cos(Ap, — Ap)a} da
0

1 , " 1 , "
= m 51n(/\m + )\n)x . + m Sln()\’m — /\n)a: .
= Ot AT s — An)
= 2()\m+An) 1 Ay, n )T 2<>\m_)\n) 1{ Ay, n )T
=0

since (A, + Ap)m = (m+n—1)7 and (A, — \p)m = (M — n)m.
(¢) Writing

72 2 oo
f(z) = 9 ~ Z CnPn ()
n=1

the coefficients ¢, in the eigenfunction expansion are found using the orthogonality of the eigenfunctions

on [0, 7].
2 ™ 2 _ .2
Cp = f/ (W x > cos \p,x dx
™ Jo 2

2 sin A\, 16 gip @n=D
= — = T
T A w(2n —1)3 2
B 16(71)n+1
(2n—1)3"

Therefore, the eigenfunction expansion of f is given by

2 x2 16 f: cos 2n=1)
7r 2n —1)3 2

n

Il
-

for0<z <.

(d) For this particular problem, the eigenfunction expansion is actually the Fourier cosine series for f.
Since the function f is piecewise smooth on the interval [0,7] and since the even extension of f to
[—7, 7] is continuous at 2 = 0, then by Dirichlet’s theorem the series converges to

71'
0)=—
1) =73
when z = 0, and therefore
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Question 3. Solve the following boundary value problem for the steady-state temperature u(x,y) in a thin
plate in the shape of a semi-infinite strip when heat transfer to the surroundings at temperature zero takes
place at the faces of the plate:

%u  O*u
W+67y2—bu:0, O<r<oo, O<y<l1
ou
—(0,y) =0, 0<y<l
5 0 Y) Y
u(z,0) =0, 0<z<oo

u(z,1) = f(z), 0<zx<oo

where b is a positive constant and
1 0<zx<a

fx) =

0 T > a.

SOLUTION: We try separation of variables. If we assume that
u(z,y) = X(2) Y (y),
then the partial differential equation becomes
X"Y + XY" - bXY =0,

that is,
- _4b=p (constant)

and we obtain the two ordinary differential equations
X"—pX =0 0<z<o0 Y'+(p-bY =0 0<y<l1
X'(0)=0 Y(0)=0
|X ()] bounded as x — o0

We solve the X-equation first, and consider three cases:

(i) If p =0, then the general solution to the equation X" =0 is
X@)=caz+c
and the condition X’(0) = 0 implies that ¢; = 0, the solution is therefore X (z) = 1.
(ii) If p > 0, say p = p?, then the general solution to the equation X” — u? X =0 is
X (x) = ¢1 cosh px + c2 sinh px

and the condition X'(0) = 0 implies ¢ = 0, while the condition |X (x)| bounded as x — oo implies
that ¢; = 0. There are no non-trivial solutions in this case.

(iii) If p < 0, say p = —\?, then the general solution to the equation X" + \? X = 0 is
X(x) = ¢1 cos A\x + ¢ sin Ax

the condition X’(0) = 0 implies that ¢co = 0, and the solution is X (x) = ¢; cos Az, which is bounded
as & — o0.



Therefore, for any A > 0 the function
Xx(z) = cos \x

satisfies the differential equation, the boundary condition, and the boundedness condition.

The corresponding equation for Y is given by

Y'—~ (A +b)Y =0

Y(0)=0
and has general solution
Y (y) = ¢; sinh ((1 - y)\/TH)) + ¢ sinh (y A2+ b) .
Now, the condition Y'(0) = 0 implies that ¢; = 0, and the solutions are
Y\ (y) = sinh (y A2 + b) .
Using the superposition principle, we write
u(z,y) = /000 A() cos Az sinh (y A2 4+ b) dA

and u(z,1) = f(z) implies that

A(N) sinhy/ A2 4+ b= 2 / f(z) cos Az dx
T Jo

2 a
= 7/ cos \x dx
™ Jo

= Y sin \a.

Therefore,

d\

@) 2 /°° sin Aa cos Az sinh (yv/A% +b)
u(z,y) = =
eIk X sinh VA2 £ b

for0<z<oo, 0<y<l.



Question 1. Find the solution of the exterior Dirichlet problem for a disk, that is find a bounded
solution to the problem:

10 (,0u +i@—0 <r< —T <0<
ror \ or r2 002 esrsee i i
u(r,m) =u(r,—m) a<r<oo

ou ou
%(r, ) = 89(T —m) a<r<0o
u(a, ) = f(0) —T<f<m.

SOLUTION: A solution to Laplace’s equation in polar coordinates which satisfies the periodicity conditions
is given by

u(r,0) = Ag + Bg logr + Z { (A,, cosnb + B,, sinnb) + — (C’ cosnf + D, smn@)}
n=1
and in order to satisfy the boundedness condition we need By = A,, = B, =0, forn =1,2,3,..., so that
=1
0)=A — (Cy, 0+ D,, sinnf).
) O+Z7’n( cosnd + sin nd)

Now, when r = a we have

f(0) =u(a,0) = Ay + Z % (C,, cosnb + D,, sinnf),

where
1 s

do=o [ J(6)d0,

Cn = % ’ f(@) cosngde,

D, = % ' f(@) sinng do
forn=1,2,3....
Therefore

1 T 1 oo axn [T | .
=5 /77r f(o)do + - nz::l (;) » f(®) {cosng cosnbd + sinng sinnd} do,

that is,

u(r,@):%/_ {1+22() cosn(f — (Z))} do.

Now let z = 4 e’ (?=%) then
r

o (E)” in(6-6) _ (g)" [cosn(f — ¢) + i sinn(f — ¢))],

r

and

1—|—ZZ( ) cosn(f — @) = Re(l—i—Ziz").
n=1



Since |z| = % <1, then
,

2 2

0o a\™ 25 142 2 g
1+2) (= 0 —¢)=Re|1l - _ .
+ nz_:l(r) cosn(f — @) Re( + 1_2) Re(l—z) a2 — 2ar cos(0 — ) + 12

The solution to the exterior Dirichlet problem for the disk is therefore

1 /’r (r* —a?) f(¢)

u(r,9) = o = a2 — 2ar cos(0 — ¢) + r?

do,

fora<r<oo, —-wm<6O<m.



