
 

Math 300 Spring-Summer 2018

Advanced Boundary Value Problems I

Derivation of the One-Dimensional Wave Equation

Department of Mathematical and Statistical Sciences

University of Alberta

In this note, we derive the one-dimensional wave equation for small vertical displacements of a perfectly
elastic string of length L.

We assume the string is stretched under tension and fastened at two points A andB, and we let x denote
the distance from the end A toward the end b, and let t denote the time.

x = Lx =
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At time t = 0, the string is set in motion, and we let u(x, t) denote the vertical displacement of the string at
position x, at time t.

We assume the string is flexible, so there is no resistance to bending, and we let T (x, t) denote the tension
in the string at position x, at time t.
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Applying Newton’s second law to the small portion of the string between x and x+∆x, if ρ is the mass per
unit length, we have

∂

∂t
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ρ∆x
∂u

∂t

)

≈ T (x+∆x, t) sin θ(x+∆x, t)− T (x, t) sin θ(x, t)− α
∂u

∂t
∆x− βu∆x+Q(x, t)∆x,

where α > 0 and β > 0.

The term −α
∂u

∂t
represents any resistance force per unit length, the term −βu represents any restoring force

per unit length, and the term Q(x, t) represents any external forces (such as gravity) per unit length.

Dividing by ∆x and letting ∆x → 0, we get equality in the limit, so that u satisfies
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(T (x, t) sin θ(x, t))− α

∂u
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− βu(x, t) +Q(x, t) (∗)

for t ≥ 0, 0 < x < L.



Now we make some simplifying assumptions.

• For small vertical displacements then we have the approximation

sin θ(x, t) ≈ tan θ(x, t) =
∂u

∂x

and the PDE (∗) becomes

∂

∂t

(

ρ
∂u

∂t

)

=
∂

∂x

(

T (x, t)
∂u

∂x

)

− α
∂u

∂t
− βu+Q(x, t) (∗∗)

for t ≥ 0, 0 < x < L.

• If the string is perfectly elastic then T ≈ constant = T0, the initial tension.

• If the string is made from a uniform material, then ρ(x) = constant, and the PDE (∗∗) becomes

ρ
∂2u

∂t2
= T0

∂2u

∂x2
− α

∂u

∂t
− βu+Q(x, t) (∗ ∗ ∗)

for t ≥ 0, 0 < x < L.

• If the tension T is large compared to Q(x, t), we may neglect Q(x, t) and the PDE (∗ ∗ ∗) becomes

ρ
∂2u

∂t2
= T0

∂2u

∂x2
− α

∂u

∂t
− βu (†)

for t ≥ 0, 0 < x < L. This equation is called the Telegrapher’s Equation, and models, among other
things electromagnetic wave transmission in a wire. In this context, it usually is written as
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where u is either the magnitude E of the voltage at any point in the wire, or the current i at any point in the
wire. Here, R is the series resistence per unit length, L is the inductance per unit length (not to confused
with the length of the wire), C is the capactitance per unit length, and G conductance per unit length.

• If there are no frictional forces and no restoring forces, then the PDE (†) becomes

ρ
∂2u

∂t2
= T0

∂2u

∂x2
,

that is,

∂2u

∂t2
= c2

∂2u

∂x2
(††)

for t ≥ 0, 0 < x < L, where c2 =
T0

ρ
, and c is the velocity of wave propagation along the string. This

is the One-Dimensional Wave Equation, and models sound waves, water waves, vibrations in solids,
longitudinal or torsional vibrations in a rod, among other things.

From our rule of thumb for side conditions, we need two boundary conditions and two initial conditions.

The initial conditions usually take the form of

(i) the initial displacement

u(x, 0) = f(x), 0 ≤ x ≤ L,

and

(ii) the initial velocity

v(x, 0) =
∂u

∂t
(x, 0) = g(x), 0 ≤ x ≤ L.



Typical boundary conditions are of the same form given in the discussion of the one-dimensional heat
equation.

1st Kind: Dirichlet Conditions

u(0, t) = g1(t),

u(L, t) = g2(t)

for t ≥ 0. Here the ends move with time in a vertical motion only.

For homogeneous Dirichlet conditions,

u(0, t) = 0,

u(L, t) = 0

for t ≥ 0, the ends of the string are tied down.

2nd Kind: Neumann Conditions

Here the tensile force T
∂u

∂x
is specified at the ends.

T (0, t)
∂u

∂x
(0, t) = g1(t),

T (L, t)
∂u

∂x
(L, t) = g2(t)

for t ≥ 0.

For constant tensile force, we have homogeneous Neumann conditions,

∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0

for t ≥ 0. These conditions can be achieved, for example, by attaching the ends of the string to a frictionless
sleeve which moves vertically.

3rd Kind: Robin Conditions

Here the conditions describe some type of elastic attachment at both ends

T (0, t)
∂u

∂x
(0, t) = k1u(0, t),

T (L, t)
∂u

∂x
(L, t) = −k2u(L, t)

where the spring constants are k1 > 0 and k2 > 0, and both springs have the other end fixed.

Or, the other ends of the springs can move vertically

T (0, t)
∂u

∂x
(0, t) = k1[u(0, t)− d1(t)],

T (L, t)
∂u

∂x
(L, t) = −k2[u(L, t)− d2(t)]

for t ≥ 0.



Boundary Value Problems with Periodicity Conditions

Sometimes in the statement of an Initial Value – Boundary Value Problem, the side conditions take the form
of periodicity conditions instead of boundary conditions or initial conditions, in order to maintain continuity
of the solution across artifical boundaries, as with problems in planar polar coordinates.

Solve the eigenvalue problem
d2φ

dx2
+ λφ = 0

subject to the periodicity conditions

φ(0) = φ(2π) and
dφ

dx
(0) =

dφ

dx
(2π).

Solution:Again, we consider three cases.

case 1: If λ = 0, then the equation is φ′′ = 0 with general solution φ(x) = Ax+B. From the first periodicity
condition φ(0) = φ(2π) we have

φ(0) = A · 0 +B = A · 2π +B,

so that 2πA = 0, and A = 0. The solution is now

φ(x) = B, 0 ≤ x ≤ 2π.

The second periodicity condition φ′(0) = φ(2π) holds automatically, since

φ′(0) = 0 = φ′(2π).

Therefore λ0 = 0 is an eigenvalue with corresponding eigenfunction

φ0(x) = 1, 0 ≤ x ≤ 2π.

case 2: If λ < 0, then λ = −µ2 where µ 6= 0. The differential equation is φ′′ − µ2φ = 0 with general solution

φ(x) = A coshµx+B sinhµx, 0 ≤ x ≤ 2π.

From the first periodicity condition

φ(0) = A = A cosh 2πµ+B sinh 2πµ = φ(2π),

while from the second periodicity condition

φ′(0) = µB = µA sinh 2πµ+ µB cosh 2πµ = φ′(2π).

We have the homogeneous system of linear equations for A and B

(cosh 2πµ− 1)A+ sinh 2πµB = 0

sinh 2πµA+ (cosh 2πµ− 1)B = 0,

and the determinant of the coefficient matrix is
∣

∣

∣

cosh 2πµ− 1 sinh 2πµ
sinh 2πµ cosh 2πµ− 1

∣

∣

∣ = 2(1− cosh 2πµ) = −4 sinh2 πµ 6= 0

since πµ 6= 0, and this system has only the trivial solution A = B = 0. In this case the boundary value
problem has only the trivial solution φ(x) = 0 for 0 ≤ x ≤ 2π.



case 3: If λ > 0, then λ = µ2 where µ 6= 0, and the differential equation is φ′′+µ2φ = 0 with general solution

φ(x) = A cosµx+B sinµx, 0 ≤ x ≤ 2π.

From the first periodicity condition

φ(0) = A = A cos 2πµ+B sin 2πµ = φ(2π),

while from the second periodicity condition

φ′(0) = µB = −µA sin 2πµ+ µB cos 2πµ = φ′(2π).

We have the homogeneous system of linear equations for A and B

(1− cos 2πµ)A+ sin 2πµB = 0

− sin 2πµA+ (1− cosh 2πµ)B = 0,

and the determinant of the coefficient matrix is
∣

∣

∣

∣

1− cos 2πµ sin 2πµ
− sin 2πµ 1− cos 2πµ

∣

∣

∣

∣

= 2(1− cos 2πµ) = 4 sin2 πµ

and this system has a nontrivial solution if and only if this determinant is zero, that is, if and only if
sin2 πµ = 0, that is if and only if πµ = nπ for some integer n.

In this case the boundary value problem has a nontrivial solution if and only if µ = n for some integer n.

The eigenvalues are
λn = µ2

n
= n2,

and the corresponding eigenfunctions are

φn(x) = An cosnx+Bn sinnx, 0 ≤ x ≤ 2π

for n ≥ 1.

Note that for each eigenvalue λn = n, n ≥ 1, we have two corresponding eigenfunctions; namely, cosnx and
sinnx.
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