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In this note, we derive the one-dimensional wave equation for small vertical displacements of a perfectly
elastic string of length L.

We assume the string is stretched under tension and fastened at two points A andB, and we let = denote
the distance from the end A toward the end b, and let ¢ denote the time.
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At time ¢ = 0, the string is set in motion, and we let u(z,t) denote the vertical displacement of the string at
position z, at time t.

We assume the string is flexible, so there is no resistance to bending, and we let T'(x,t) denote the tension
in the string at position z, at time t.
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Applying Newton’s second law to the small portion of the string between x and x + Ax, if p is the mass per
unit length, we have

% ( Am?j) ~T(x+ Az, t)sinf(z + Ax,t) — T(x,t)sinf(z,t) — Q%AI — fulz + Q(x,t)Ax,

where o > 0 and 8 > 0.

U
The term —aa represents any resistance force per unit length, the term —(u represents any restoring force

per unit length, and the term Q(x,t) represents any external forces (such as gravity) per unit length.

Dividing by Az and letting Az — 0, we get equality in the limit, so that u satisfies

du
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fort>0,0<z<0L.



Now we make some simplifying assumptions.

e For small vertical displacements then we have the approximation
ou

sinf(x,t) ~ tanf(x,t) = —

(2,1 ~ tan Oz, ) = =

and the PDE (x) becomes

fort >0, 0<x < L.
e If the string is perfectly elastic then T' ~ constant = Tj, the initial tension.

o If the string is made from a uniform material, then p(x) = constant, and the PDE (xx) becomes

0% 0% ou
PiatQ =logs *OZE — fu+ Q(z,t) (o * %)
fort>0,0<z<L.

o If the tension T is large compared to Q(x,t), we may neglect Q(z,t) and the PDE (x * %) becomes

0%u 0u ou
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for t > 0, 0 < = < L. This equation is called the Telegrapher’s Equation, and models, among other
things electromagnetic wave transmission in a wire. In this context, it usually is written as

0%u 0%u ou

9z = LO@ + (RC + LG)E + RGu
where u is either the magnitude E of the voltage at any point in the wire, or the current 7 at any point in the
wire. Here, R is the series resistence per unit length, L is the inductance per unit length (not to confused
with the length of the wire), C is the capactitance per unit length, and G conductance per unit length.

o If there are no frictional forces and no restoring forces, then the PDE () becomes
0%u 0%u
=Ty,
Por = 0922
that is,
P*u 0%
92 ¢ ) (1)
T
fort >0, 0 < x < L, where ¢ = —0, and c is the velocity of wave propagation along the string. This

is the One-Dimensional Wave Equation, and models sound waves, water waves, vibrations in solids,
longitudinal or torsional vibrations in a rod, among other things.
From our rule of thumb for side conditions, we need two boundary conditions and two initial conditions.

The initial conditions usually take the form of

(i) the initial displacement

and

(ii) the initial velocity



Typical boundary conditions are of the same form given in the discussion of the one-dimensional heat
equation.

15T KiND: Dirichlet Conditions

u(0,2) = g1(t),
U(L,t) = QQ(t)

for t > 0. Here the ends move with time in a vertical motion only.

For homogeneous Dirichlet conditions,

for ¢t > 0, the ends of the string are tied down.

28D KIND: Neumann Conditions

1o}
Here the tensile force Ta—u is specified at the ends.
T

ou

T(Ov t)%(& t) =0 (t),
T(L 0T (L.1) = (1)

for t > 0.

For constant tensile force, we have homogeneous Neumann conditions,

ou
%(07 t) =0,
ou
%(L7 t)=0

for ¢ > 0. These conditions can be achieved, for example, by attaching the ends of the string to a frictionless
sleeve which moves vertically.

38> KIND: Robin Conditions

Here the conditions describe some type of elastic attachment at both ends

T(O,t)%(o,t) = kyu(0,1),
T(L,t)%(L,t) = —kou(L, 1)

where the spring constants are ky > 0 and ko > 0, and both springs have the other end fixed.

Or, the other ends of the springs can move vertically

70,5 24(0,8) = ka[u(0,1) ~ s (1)),
T(L, )P L, 1) = —halu(L, 1) — d (1)

for ¢t > 0.



Boundary Value Problems with Periodicity Conditions

Sometimes in the statement of an Initial Value — Boundary Value Problem, the side conditions take the form
of periodicity conditions instead of boundary conditions or initial conditions, in order to maintain continuity
of the solution across artifical boundaries, as with problems in planar polar coordinates.

Solve the eigenvalue problem
o
dz? N

subject to the periodicity conditions

@ 0= %

dx 0) = dz (2m).

9(0) = g(27)  and

SOLUTION:Again, we consider three cases.

case 1: If A = 0, then the equation is ¢" = 0 with general solution ¢(z) = Az + B. From the first periodicity
condition ¢(0) = ¢(27) we have
¢(0)=A-0+B=A-21+B,

so that 27A = 0, and A = 0. The solution is now
¢(xr) =B, 0<x<2m
The second periodicity condition ¢’'(0) = ¢(27) holds automatically, since

¢'(0) = 0= ¢'(2m).

Therefore \y = 0 is an eigenvalue with corresponding eigenfunction

do(x) =1, 0<uz<2m.

case 2: If A < 0, then A = —u? where p # 0. The differential equation is ¢” — u?¢ = 0 with general solution
¢(x) = Acosh px + Bsinh pzx, 0<az <27.

From the first periodicity condition
0(0) = A= Acosh2mp + Bsinh 2y = ¢(2m),

while from the second periodicity condition

¢'(0) = uB = pAsinh 2mp + pB cosh 2mp = ¢ (27).

We have the homogeneous system of linear equations for A and B

(cosh2mpy —1) A+sinh27pu B =0
sinh 2 A + (cosh 27rp — 1) B = 0,

and the determinant of the coefficient matrix is

cosh2mp —1 sinh2mp | . . .

sinh 271 cosh 2 — 11 = 2(1 — cosh2mp) = —4sinh” 7 # 0
since mu # 0, and this system has only the trivial solution A = B = 0. In this case the boundary value
problem has only the trivial solution ¢(z) = 0 for 0 < z < 27.



case 3: If A > 0, then A = p? where p # 0, and the differential equation is ¢” + u?¢ = 0 with general solution
¢(x) = Acospx + Bsinpz, 0<z <2,

From the first periodicity condition
$(0) = A = Acos2mp + Bsin2rp = ¢(27),

while from the second periodicity condition

¢'(0) = uB = —pAsin 27rp + pB cos 2mp = ¢ (27).

We have the homogeneous system of linear equations for A and B

(1 —cos2mp) A+sin2rpu B =0
—sin2mpu A+ (1 —cosh2mu) B =0,

and the determinant of the coefficient matrix is

1 —cos2mp sin 2w

— 91 _ — Aain2
Csin2rp 1— cos2mp = 2(1 — cos2mp) = 4sin”

and this system has a nontrivial solution if and only if this determinant is zero, that is, if and only if
sin? rp = 0, that is if and only if 7 = nx for some integer n.

In this case the boundary value problem has a nontrivial solution if and only if 4 = n for some integer n.

The eigenvalues are
2

Ap = ,U?L =n,
and the corresponding eigenfunctions are

on(x) = Apcosna + By sinnz, 0<z <27

for n > 1.

Note that for each eigenvalue \,, = n, n > 1, we have two corresponding eigenfunctions; namely, cos nx and
sinnx.



