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The following inequality is known as Bessel’s Inequality and can be found on page 66 of the text.

Theorem. Let f(x) be piecewise smooth on the interval [−π, π], and let the Fourier series of f be

f(x) ∼ a0 +

∞
∑

n=1

(an cosnx+ bn sinnx)

where

a0 =
1

2π

∫

π

−π

f(t) dt

an =
1

π

∫

π

−π

f(t) cosnt dt, n ≥ 1

bn =
1

π

∫

π

−π

f(t) sinnt dt, n ≥ 1

then

a20 +
1

2

∞
∑

k=1

(a2
k
+ b2

k
) ≤

1

2π

∫

π

−π

f(t)2 dt.

Proof. Let Sn(x) be the nth partial sum of the Fourier series, that is,

Sn(x) = a0 +

n
∑

k=1

(ak cos kx+ bk sin kx).

Using the orthogonality, we have
∫

π

−π

a0 Sn(t) dt = 2πa20 = a0

∫

π

−π

f(t) dt

∫

π

−π

ak cos kt Sn(t) dt = πa2
k
= ak

∫

π

−π

f(t) cos kt dt

∫

π

−π

bk sin kt Sn(t) dt = πb2
k
= bk

∫

π

−π

f(t) sin kt dt

for k = 1, 2, . . . , n.

Adding the equations on the right-hand side, we have
∫

π

−π

f(t)Sn(t) dt = 2πa20 + π

n
∑

k=1

(a2
k
+ b2

k
) (∗)

and adding the equations on the left-hand side, we have
∫

π

−π

Sn(t)
2 dt = 2πa20 + π

n
∑

k=1

(a2
k
+ b2

k
) (∗∗)

for n ≥ 1.



Now,

0 ≤

∫

π

−π

[f(t)− Sn(t)]
2
dt

=

∫

π

−π

f(t)2 dt− 2

∫

π

−π

f(t)Sn(t) dt+

∫

π

−π

Sn(t)
2 dt

=

∫

π

−π

f(t)2 dt−

∫

π

−π

Sn(t)
2 dt

=

∫

π

−π

f(t)2 dt−

[

2πa20 + π

n
∑

k=1

(a2
k
+ b2

k
)

]

,

so that

a20 +
1

2

n
∑

k=1

(a2
k
+ b2

k
) ≤

1

2π

∫

π

−π

f(t)2 dt

for all n ≥ 1.

Letting n → ∞, we have

a20 +
1

2

∞
∑

k=1

(a2
k
+ b2

k
) ≤

1

2π

∫

π

−π

f(t)2 dt,

and the series a20 +
1

2

∞
∑

k=1

(a2
k
+ b2

k
) converges.

Note: We only needed the function f to be piecewise continuous on the interval [−π, π] so that the integral
∫

π

−π

f(t)2 dt

exists and is finite.

Also, if we assume that f is piecewise smooth on the interval [−π, π], and that f(π) = f(−π), then we can
use Bessel’s Inequality to show that the Fourier series for f converges at each point of the interval. It is a
little more difficult to show that it converges to f at the points of continuity of f.

Corollary. If f is piecewise smooth on the interval [−π, π], and f(π) = f(−π), then the Fourier series

a0 +
∞
∑

n=1

(an cosnx+ bn sinnx)

converges absolutely and uniformly on [−π, π].

Proof. Since f ′ is piecewise continuous on the interval [−π, π] then the Fourier coefficients of f ′ exist and
the Fourier series of f ′ can be written

f ′(x) ∼ α0 +

∞
∑

n=1

(αn cosnx+ βn sinnx),

where

α0 =
1

2π

∫

π

−π

f ′(t) dt

αn =
1

π

∫

π

−π

f ′(t) cosnt dt,

βn =
1

π

∫

π

−π

f ′(t) sinnt dt,

for n ≥ 1.



Now,

α0 =
1

2π

∫

π

−π

f ′(t) dt =
1

2π
[f(π)− f(−π)] = 0,

and integrating by parts, we have

αn = n bn and βn = −nan

for n ≥ 1.

From the Cauchy-Schwarz inequality and Bessel’s inequality applied to f ′, we have

N
∑

n=1

√

a2
n
+ b2

n
=

N
∑

n=1

1

n

√

α2
n
+ β2

n

≤

(

N
∑

n=1

1

n2

)(

N
∑

n=1

(α2

n
+ β2

n
)

)

≤
π2

6
·

N
∑

n=1

(α2

n
+ β2

n
)

≤
π

12
·

∫

π

−π

f ′(t)2 dt,

for all N ≥ 1, and so
∞
∑

n=1

√

a2
n
+ b2

n
converges.

For each n ≥ 1, we have
|an| ≤

√

a2
n
+ b2

n
and |bn| ≤

√

a2
n
+ b2

n
,

so that

∞
∑

n=1

∣

∣an cosnt+ bn sinnt
∣

∣ ≤

∞
∑

n=1

(|an|+ |bn|)

≤ 2

∞
∑

n=1

√

a2
n
+ b2

n

≤
π

6

∫

π

−π

f ′(t)2 dt < ∞,

and the Fourier series for f converges absolutely and uniformly on the interval [−π, π].


