

Math 300 Winter 2018
Advanced Boundary Value Problems I

Bessel's Inequality

Friday June 8, 2018

Department of Mathematical and Statistical Sciences
University of Alberta

The following inequality is known as **Bessel's Inequality** and can be found on page 66 of the text.

Theorem. Let $f(x)$ be piecewise smooth on the interval $[-\pi, \pi]$, and let the Fourier series of f be

$$f(x) \sim a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

where

$$\begin{aligned} a_0 &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt \\ a_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt dt, \quad n \geq 1 \\ b_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt dt, \quad n \geq 1 \end{aligned}$$

then

$$a_0^2 + \frac{1}{2} \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)^2 dt.$$

Proof. Let $S_n(x)$ be the n^{th} partial sum of the Fourier series, that is,

$$S_n(x) = a_0 + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx).$$

Using the orthogonality, we have

$$\begin{aligned} \int_{-\pi}^{\pi} a_0 S_n(t) dt &= 2\pi a_0^2 = a_0 \int_{-\pi}^{\pi} f(t) dt \\ \int_{-\pi}^{\pi} a_k \cos kt S_n(t) dt &= \pi a_k^2 = a_k \int_{-\pi}^{\pi} f(t) \cos kt dt \\ \int_{-\pi}^{\pi} b_k \sin kt S_n(t) dt &= \pi b_k^2 = b_k \int_{-\pi}^{\pi} f(t) \sin kt dt \end{aligned}$$

for $k = 1, 2, \dots, n$.

Adding the equations on the right-hand side, we have

$$\int_{-\pi}^{\pi} f(t) S_n(t) dt = 2\pi a_0^2 + \pi \sum_{k=1}^n (a_k^2 + b_k^2) \quad (*)$$

and adding the equations on the left-hand side, we have

$$\int_{-\pi}^{\pi} S_n(t)^2 dt = 2\pi a_0^2 + \pi \sum_{k=1}^n (a_k^2 + b_k^2) \quad (**)$$

for $n \geq 1$.

Now,

$$\begin{aligned}
0 &\leq \int_{-\pi}^{\pi} [f(t) - S_n(t)]^2 dt \\
&= \int_{-\pi}^{\pi} f(t)^2 dt - 2 \int_{-\pi}^{\pi} f(t) S_n(t) dt + \int_{-\pi}^{\pi} S_n(t)^2 dt \\
&= \int_{-\pi}^{\pi} f(t)^2 dt - \int_{-\pi}^{\pi} S_n(t)^2 dt \\
&= \int_{-\pi}^{\pi} f(t)^2 dt - \left[2\pi a_0^2 + \pi \sum_{k=1}^n (a_k^2 + b_k^2) \right],
\end{aligned}$$

so that

$$a_0^2 + \frac{1}{2} \sum_{k=1}^n (a_k^2 + b_k^2) \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)^2 dt$$

for all $n \geq 1$.

Letting $n \rightarrow \infty$, we have

$$a_0^2 + \frac{1}{2} \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)^2 dt,$$

and the series $a_0^2 + \frac{1}{2} \sum_{k=1}^{\infty} (a_k^2 + b_k^2)$ converges. \square

Note: We only needed the function f to be piecewise continuous on the interval $[-\pi, \pi]$ so that the integral

$$\int_{-\pi}^{\pi} f(t)^2 dt$$

exists and is finite.

Also, if we assume that f is piecewise smooth on the interval $[-\pi, \pi]$, and that $f(\pi) = f(-\pi)$, then we can use Bessel's Inequality to show that the Fourier series for f converges at each point of the interval. It is a little more difficult to show that it converges to f at the points of continuity of f .

Corollary. If f is piecewise smooth on the interval $[-\pi, \pi]$, and $f(\pi) = f(-\pi)$, then the Fourier series

$$a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

converges absolutely and uniformly on $[-\pi, \pi]$.

Proof. Since f' is piecewise continuous on the interval $[-\pi, \pi]$ then the Fourier coefficients of f' exist and the Fourier series of f' can be written

$$f'(x) \sim \alpha_0 + \sum_{n=1}^{\infty} (\alpha_n \cos nx + \beta_n \sin nx),$$

where

$$\begin{aligned}
\alpha_0 &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f'(t) dt \\
\alpha_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} f'(t) \cos nt dt, \\
\beta_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} f'(t) \sin nt dt,
\end{aligned}$$

for $n \geq 1$.

Now,

$$\alpha_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f'(t) dt = \frac{1}{2\pi} [f(\pi) - f(-\pi)] = 0,$$

and integrating by parts, we have

$$\alpha_n = n b_n \quad \text{and} \quad \beta_n = -n a_n$$

for $n \geq 1$.

From the Cauchy-Schwarz inequality and Bessel's inequality applied to f' , we have

$$\begin{aligned} \sum_{n=1}^N \sqrt{a_n^2 + b_n^2} &= \sum_{n=1}^N \frac{1}{n} \sqrt{\alpha_n^2 + \beta_n^2} \\ &\leq \left(\sum_{n=1}^N \frac{1}{n^2} \right) \left(\sum_{n=1}^N (\alpha_n^2 + \beta_n^2) \right) \\ &\leq \frac{\pi^2}{6} \cdot \sum_{n=1}^N (\alpha_n^2 + \beta_n^2) \\ &\leq \frac{\pi}{12} \cdot \int_{-\pi}^{\pi} f'(t)^2 dt, \end{aligned}$$

for all $N \geq 1$, and so $\sum_{n=1}^{\infty} \sqrt{a_n^2 + b_n^2}$ converges.

For each $n \geq 1$, we have

$$|a_n| \leq \sqrt{a_n^2 + b_n^2} \quad \text{and} \quad |b_n| \leq \sqrt{a_n^2 + b_n^2},$$

so that

$$\begin{aligned} \sum_{n=1}^{\infty} |a_n \cos nt + b_n \sin nt| &\leq \sum_{n=1}^{\infty} (|a_n| + |b_n|) \\ &\leq 2 \sum_{n=1}^{\infty} \sqrt{a_n^2 + b_n^2} \\ &\leq \frac{\pi}{6} \int_{-\pi}^{\pi} f'(t)^2 dt < \infty, \end{aligned}$$

and the Fourier series for f converges absolutely and uniformly on the interval $[-\pi, \pi]$. \square