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The following inequality is known as Bessel’s Inequality and can be found on page 66 of the text.

Theorem. Let f(x) be piecewise smooth on the interval [—m, 7], and let the Fourier series of f be
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Proof. Let S, () be the n'® partial sum of the Fourier series, that is,
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Using the orthogonality, we have
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Adding the equations on the right-hand side, we have
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so that

for all n > 1.
Letting n — oo, we have
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and the series a3 + 3 Z a3 + b}) converges. O

Note: We only needed the function f to be piecewise continuous on the interval [—7, 7] so that the integral
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exists and is finite.

Also, if we assume that f is piecewise smooth on the interval [—7, 7], and that f(7) = f(—m), then we can
use Bessel’s Inequality to show that the Fourier series for f converges at each point of the interval. It is a
little more difficult to show that it converges to f at the points of continuity of f.

Corollary. If f is piecewise smooth on the interval [—m, 7], and f(7) = f(—n), then the Fourier series
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converges absolutely and uniformly on [—m,7].

Proof. Since [’ is piecewise continuous on the interval [—m, 7| then the Fourier coefficients of f” exist and
the Fourier series of f’ can be written
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Now,
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and integrating by parts, we have
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From the Cauchy-Schwarz inequality and Bessel’s inequality applied to [, we have
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for all N > 1, and so Y. /a2 + b2 converges.
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For each n > 1, we have
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and the Fourier series for f converges absolutely and uniformly on the interval [—7, 7].



