

Math 300 Spring-Summer 2018
Advanced Boundary Value Problems I
General Solution to Laplace's Equation
Friday May 18, 2018

Department of Mathematical and Statistical Sciences
University of Alberta

General Solution to Laplace's Equation

Given a linear equation with constant coefficients such as

$$A \frac{\partial^2 u}{\partial x^2} + B \frac{\partial^2 u}{\partial x \partial y} + C \frac{\partial^2 u}{\partial y^2} = 0, \quad (*)$$

we can always find the general solution using the same technique we will use to find d'Alembert's general solution to the wave equation.

Consider the coordinate transformation

$$\begin{aligned} r &= ax + by \\ s &= cx + dy, \end{aligned}$$

where

$$\det \left(\frac{\partial(r, s)}{\partial(x, y)} \right) = ad - bc \neq 0.$$

From the chain rule, we have

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial x} = a \frac{\partial u}{\partial r} + c \frac{\partial u}{\partial s}$$

and

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial y} = b \frac{\partial u}{\partial r} + d \frac{\partial u}{\partial s}.$$

Also,

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial r^2} \left(\frac{\partial r}{\partial x} \right)^2 + 2 \frac{\partial^2 u}{\partial r \partial s} \left(\frac{\partial r}{\partial x} \right) \left(\frac{\partial s}{\partial x} \right) + \frac{\partial^2 u}{\partial s^2} \left(\frac{\partial s}{\partial x} \right)^2,$$

and similarly,

$$\begin{aligned} \frac{\partial^2 u}{\partial x^2} &= a^2 \frac{\partial^2 u}{\partial r^2} + 2ac \frac{\partial^2 u}{\partial r \partial s} + c^2 \frac{\partial^2 u}{\partial s^2}, \\ \frac{\partial^2 u}{\partial x \partial y} &= ab \frac{\partial^2 u}{\partial r^2} + (ad + bc) \frac{\partial^2 u}{\partial r \partial s} + cd \frac{\partial^2 u}{\partial s^2}, \\ \frac{\partial^2 u}{\partial y^2} &= b^2 \frac{\partial^2 u}{\partial r^2} + 2bd \frac{\partial^2 u}{\partial r \partial s} + d^2 \frac{\partial^2 u}{\partial s^2}. \end{aligned}$$

Substituting these expressions into the partial differential equation (*), we have

$$(Aa^2 + Bab + Cb^2) \frac{\partial^2 u}{\partial r^2} + (Ac^2 + Bcd + Cd^2) \frac{\partial^2 u}{\partial s^2} + (2Aac + B(ad + bc) + 2Cbd) \frac{\partial^2 u}{\partial r \partial s} = 0. \quad (**)$$

By suitable choices of a, b, c , and d , we can make the first two terms in (**) vanish. If $A \neq 0$, then among other possible choices we can put $b = d = 1$, and choose a and c to be the roots m_1 and m_2 of the quadratic equation

$$Am^2 + Bm + C = 0.$$

If we choose

$$a = m_1 = \frac{-B + \sqrt{B^2 - 4AC}}{2A} \quad \text{and} \quad c = m_2 = \frac{-B - \sqrt{B^2 - 4AC}}{2A},$$

then (**) becomes

$$[2Am_1m_2 + B(m_1 + m_2) + 2C] \frac{\partial^2 u}{\partial r \partial s} = 0,$$

and since

$$m_1 + m_2 = -\frac{B}{A} \quad \text{and} \quad m_1m_2 = \frac{C}{A},$$

this becomes

$$\frac{1}{A} (B^2 - 4AC) \frac{\partial^2 u}{\partial r \partial s} = 0. \quad (***)$$

Both the elliptic and hyperbolic cases require that $B^2 - 4AC \neq 0$, and therefore (***) reduces to

$$\frac{\partial^2 u}{\partial r \partial s} = 0,$$

with general solution

$$u(r, s) = F(r) + G(s),$$

where F and G are arbitrary twice differentiable functions.

Since

$$\begin{aligned} r &= m_1x + y \\ s &= m_2x + y, \end{aligned}$$

we can write the general solution as

$$u(x, y) = F(m_1x + y) + G(m_2x + y),$$

where m_1 and m_2 are as given above.

The nature of the solution depends on whether the equation is elliptic, hyperbolic, or parabolic, in fact, we have the following results:

- (i) If $B^2 - 4AC > 0$, then the equation is hyperbolic, and the roots m_1 and m_2 are real and distinct.
- (ii) If $B^2 - 4AC < 0$, then the equation is elliptic, and the roots are complex conjugates of each other, so $m_2 = \bar{m}_1$.

(iii) If $B^2 - 4AC = 0$, then the equation is parabolic, and the roots are real and equal, so $m_1 = m_2 = m$.

In this case we choose the linear transformation

$$\begin{aligned} r &= mx + y \\ s &= x, \end{aligned}$$

then $a = m$, $b = 1$, $c = 1$, and $d = 0$, and $(**)$ becomes

$$\frac{\partial^2 u}{\partial s^2} = 0,$$

with general solution

$$u(r, s) = F(r) + sG(r)$$

(since $A \neq 0$). In terms of x and y , the general solution is

$$u(x, y) = F(mx + y) + xG(mx + y).$$

Note: If $A = 0$, the above results are still valid, provided we interchange the roles of x and y and the roles of A and C .

Example. (*Potential Equation*)

For Laplace's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

the discriminant is $B^2 - 4AC = -4 < 0$, and the equation is elliptic.

The roots of the quadratic equation $m^2 + 1 = 0$ are $m_1 = i$, and $m_2 = -i$, and the general solution to Laplace's equation is

$$u(x, y) = F(y + ix) + G(y - ix),$$

where F and G are arbitrary twice continuously differentiable functions.