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Example (Interior Dirichlet Problem for Laplace’s Equation in a Disk) We want to solve the

Dirichlet problem for Laplace’s equation
Au=20

in the disk D(a) = {(x,y) € R? | 2% + y? < a?}. Here the appropriate coordinate system consists of plane
polar coordinates r and 6, where x = rcosf and y = rsinf. The disk above can then be described as
D(a)={(r,0)|0<r<a, —7m<0<m}.

A formal statement of the problem is given below:

(i) The function u(r, §) must satisfy Laplace’s equation in polar coordinates r, 6, that is,

Au =

*u 1 du 1 0% 190 ou 1 9%u
- 0 (+)
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for (r,0) € D(a).

(ii) In order to ensure that the solution is single-valued, u(r,0) must satisfy periodicity conditions at

0 = +m, that is,
u(r, —m) = u(r,m)
ou ou
90 (T7 7T) = %(T, 7T')
for0<r<a.

(iii) In order to ensure that the solution is continuous, u(r, §) must satisfy boundedness conditions at r = 0,
that is,
lim wu(r,8) = «(0,0) (finite)
r—0+

for —m <6 <.

(iv) Finally, the solution must satisfy the boundary condition at r = a, that is,
u(a,0) = f(0)

for —m <6 <.

The interior Dirichlet problem for Laplace’s equation on the disk D(a) consists of (i), (ii), (iii), (iv), and this
problem models, among other things, the steady-state temperature distribution of a circular plate with top
and bottom perfectly insulated, and boundaries held at the temperatures given.



We look for a separable solution, that is, a solution of the form
u(r,0) = R(r)O(6),

and substituting this into Laplace’s equation (x), we obtain

1d dR 1 d?0
m(rm)'@”'rzdea—o’

that is,
”R'"-©4+rR -0+ R-0"=0.

Separating variable, we have
@// 7"2R// +r R/
e R h
where A is the separation constant, and we have two ordinary differential equations:

-A

e The angle problem:
0"+X0=0

e The radius problem:
PR+ rR —AR=0
Note that the periodicity conditions (ii) imply that
R(r)©(—m) = R(r)O(m) and R(r)®'(—m) = R(r)©®' ()
for all 0 < r < a, and in order to obtain a nontrivial solution, we must have

O(—r) = O(r)
O'(—m) = ©'(n).

Therefore, ©® problem

with eigenvalues and corresponding eigenfunctions given by Check This!

)\0 :0, @0(0) = aop, n=>0

2

An=n 0,(0) = a, cosnx + b, sinnx, n>1.

The corresponding problem for R,
PR’ +rR —AR=0

is a Cauchy-Euler equation, and we assume a solution of the form R(r) = 7%, so that R/(r) = sr°*~! and
R"(r) = s(s — 1)r*=2, and substituting this into the equation we have

s(s=1)rf4+sr® = Ar® =0,
and assuming r # 0, we get the characteristic equation
s(s=1)4+s—=A=0

that is, s2 = \, and s = £v/\.



Now we have to consider two cases:

(a) If n =0, then A, = 0, and s = 0 is a double root of the characteristic equation, and one solution to the
Euler equation is R(r) = ¢, that is, a constant solution. In order to find a second linearly independent
solution, we consider the original differential equation for A = 0,

integrating,
dR
T — Co,
dr
so that iR
C2
dr 7

and a second independent solution is
R(r) = calogr.

The general solution to the radius equation for Ay = 0 is then
Ro(r) =c1 + calogr
for0<r <a.
(b) If n > 0, then A2 = n, and s = 4+n, and the general solution to the radius equation for \, = n? is
R,(r) =c3r™ +cqr™"
for0<r <a.
From the boundedness condition (iii), we need
lu(r, )] < co
as r — 01, so we must have co =0 and ¢4 = 0, and so
R, (r)=1r"

for n > 0.

Using the superposition principle, we write
oo
u(r,0) = Z r" (ay cosnb + by, sin nd) (%)
n=0
and determine the constants from the boundary condition (iv), so that
oo
£(9) = ula,9) = 3 a™ (an cosng + by sinnep)
n=0

where

Tam Ta™

T 1 77 1 g .
ag = —W/ f)dp,  an= / fl)cosnpdp,  bn=—— [ f(p)sinnpdy,



Substituting these values of a,, and b,, into (*x), we have

I N 1 [T
u(r,0) = Py flp)de + Z o f(p)r™ cosnb cosnp dp + Z pars f(p)r™ sinnd sinny do
- n=1 - n=1 -

1

B — " o
) f(<p)<1 +2;E (cosn@cosnngrsmnf)smngo)) de

1 T e P
=5 _ﬂf((p)(1+2;ancosn(@—cp))dgo,
and

u(r,@):%/w f(cp)<1+2i2:cosn(0cp)>d<p (% % )

- n=1

for0<r<a, —w<6<80.
We can easily sum the series inside the integral by noting that
2 cosnb cos = cos(n + 1)0 + cos(n — 1)6,

and if |b] < 1, then

oo 1 oo (oo}
2 Z b" cosnb cosf = 5 Z b cos(n+1)0 + b Z bt cos(n — 1)

n=1 n=1 n=1
1 oo oo
:g [Zb”cosn&—bcos@ +0b Zb”cosn9+l
n=1 n=1

1 = ..
= (b—l—b);b cosnbf + b — cosb,

so that -
[1—2bcosb + b7 Zb” cosnb = bcosf — b2,

n=1

and

ib"cosn@— M
— " 1—2bcosO + b2’

Replacing b by " and 0 by 6 — ¢ under the integral sign in (x * ), we have
a

wtrd) = 5 [ so(1eatetlod o r Y,

21 ) . a? — 2ar cos(0 — ) + r?

and

u(r,0) = £ /ﬂ L) d (+)

27 - a2 — 2arcos(6 — ) + 12 7

for 0 <r <a, —m < 0 < 7. This is called Poisson’s integral formula for the disk D(a), and gives the
unique solution to the interior Dirichlet problem for Laplace’s equation on the disk.



Exercise. (Exterior Dirichlet Problem for a Disk) Find a solution to Laplace’s equation Au = 0 in

the exterior of the disk D(a), that is, find a bounded solution to the problem

Au = =0

v e rar\"ar) 2o

u(r, —m) = u(r, )

u 1ou 1 (92u_ 10 <T8u> 1 0%u

ou ou
%(n _7T) = %(Ta 7T)
u(a,0) = f(0)

fora<r<oo, —m <0<



