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Example (Interior Dirichlet Problem for Laplace’s Equation in a Disk) We want to solve the

Dirichlet problem for Laplace’s equation
∆u = 0

in the disk D(a) = {(x, y) ∈ R
2 | x2 + y2 ≤ a2}. Here the appropriate coordinate system consists of plane

polar coordinates r and θ, where x = r cos θ and y = r sin θ. The disk above can then be described as
D(a) = {(r, θ) | 0 ≤ r ≤ a, −π ≤ θ ≤ π}.

A formal statement of the problem is given below:

(i) The function u(r, θ) must satisfy Laplace’s equation in polar coordinates r, θ, that is,
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for (r, θ) ∈ D(a).

(ii) In order to ensure that the solution is single-valued, u(r, θ) must satisfy periodicity conditions at
θ = ±π, that is,

u(r,−π) = u(r, π)

∂u

∂θ
(r,−π) =

∂u

∂θ
(r, π)

for 0 ≤ r ≤ a.

(iii) In order to ensure that the solution is continuous, u(r, θ) must satisfy boundedness conditions at r = 0,
that is,

lim
r→0+

u(r, θ) = u(0, θ) (finite)

for −π ≤ θ ≤ π.

(iv) Finally, the solution must satisfy the boundary condition at r = a, that is,

u(a, θ) = f(θ)

for −π ≤ θ ≤ π.

The interior Dirichlet problem for Laplace’s equation on the disk D(a) consists of (i), (ii), (iii), (iv), and this
problem models, among other things, the steady-state temperature distribution of a circular plate with top
and bottom perfectly insulated, and boundaries held at the temperatures given.



We look for a separable solution, that is, a solution of the form

u(r, θ) = R(r)Θ(θ),

and substituting this into Laplace’s equation (∗), we obtain
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·Θ+R · 1

r2
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= 0,

that is,
r2 R′′ ·Θ+ r R′ ·Θ+R ·Θ′′ = 0.

Separating variable, we have
Θ′′

Θ
= −r2R′′ + r R′

R
= −λ

where λ is the separation constant, and we have two ordinary differential equations:

• The angle problem :
Θ′′ + λΘ = 0

• The radius problem :
r2R′′ + r R′ − λR = 0

Note that the periodicity conditions (ii) imply that

R(r)Θ(−π) = R(r)Θ(π) and R(r)Θ′(−π) = R(r)Θ′(π)

for all 0 ≤ r ≤ a, and in order to obtain a nontrivial solution, we must have

Θ(−π) = Θ(π)

Θ′(−π) = Θ′(π).

Therefore, Θ problem

Θ′′ + λΘ = 0

Θ(−π) = Θ(π)

Θ′(−π) = Θ′(π),

with eigenvalues and corresponding eigenfunctions given by Check This!

λ0 = 0, Θ0(θ) = a0, n = 0

λn = n2 Θn(θ) = an cosnx+ bn sinnx, n ≥ 1.

The corresponding problem for Rn

r2R′′ + r R′ − λR = 0

is a Cauchy-Euler equation, and we assume a solution of the form R(r) = rs, so that R′(r) = srs−1 and
R′′(r) = s(s− 1)rs−2, and substituting this into the equation we have

s(s− 1)rs + srs − λrs = 0,

and assuming r 6= 0, we get the characteristic equation

s(s− 1) + s− λ = 0

that is, s2 = λ, and s = ±
√
λ.



Now we have to consider two cases:

(a) If n = 0, then λn = 0, and s = 0 is a double root of the characteristic equation, and one solution to the
Euler equation is R(r) = c1, that is, a constant solution. In order to find a second linearly independent
solution, we consider the original differential equation for λ = 0,

r
d

dr

(

r
dR

dr

)

= 0,

integrating,

r
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= c2,

so that
dR

dr
=

c2

r

and a second independent solution is
R(r) = c2 log r.

The general solution to the radius equation for λ0 = 0 is then

R0(r) = c1 + c2 log r

for 0 < r ≤ a.

(b) If n > 0, then λ2
n
= n, and s = ±n, and the general solution to the radius equation for λn = n2 is

Rn(r) = c3r
n + c4r

−n

for 0 < r ≤ a.

From the boundedness condition (iii), we need

|u(r, θ)| < ∞

as r → 0+, so we must have c2 = 0 and c4 = 0, and so

Rn(r) = rn

for n ≥ 0.

Using the superposition principle, we write
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and determine the constants from the boundary condition (iv), so that

f(ϕ) = u(a, ϕ) =
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for n ≥ 1.



Substituting these values of an and bn into (∗∗), we have
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for 0 ≤ r ≤ a, −π ≤ θ ≤ θ.

We can easily sum the series inside the integral by noting that

2 cosnθ cos θ = cos(n+ 1)θ + cos(n− 1)θ,

and if |b| < 1, then
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Replacing b by
r

a
and θ by θ − ϕ under the integral sign in (∗ ∗ ∗), we have
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for 0 ≤ r ≤ a, −π ≤ θ ≤ π. This is called Poisson’s integral formula for the disk D(a), and gives the
unique solution to the interior Dirichlet problem for Laplace’s equation on the disk.



Exercise. (Exterior Dirichlet Problem for a Disk) Find a solution to Laplace’s equation ∆u = 0 in

the exterior of the disk D(a), that is, find a bounded solution to the problem
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u(r,−π) = u(r, π)
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u(a, θ) = f(θ)

for a ≤ r < ∞, −π ≤ θ ≤ π.


