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Question 1. Thomsen’s Relation Prove that for any lines a, b, c :

σc σa σb σc σa σb σa σb σc σa σb σc σb σa σc σb σa σb σa σc σb σa = ι.

Solution: First we note that (σcσaσb)
2 is a translation.

If a, b, c are concurrent or parallel, then σcσaσb = σm is a reflection in a line m, and

(σcσaσb)
2 = σ2

m = ι = τ−→
0
.

If a, b, c are neither concurrent nor parallel, then σcσaσb is a glide reflection, say

σcσaσb = τ−→u σ` = σ`τ−→u ,

where −→u is parallel to `, so that

(σcσaσb)
2 = τ−→u σ`σ`τ−→u = τ2

−→u σ2
` = τ2

−→u = τ−→
2u

.

We have

σc σa σb σc σa σb σa σb σc σa σb σc σb σa σc σb σa σb σa σc σb σa

= σc σa σb σc σa σb σa σb σc σa σb σc σb σa σc σb σa σc σc σb σa σc σb σa

= (σc σa σb)
2(σa σb σc)

2(σb σa σc)
2(σc σb σa)2.

Since (σc σb σa)2, (σc σa σb)
2, (σb σa σc)

2, and (σa σb σc)
2 are all translations, they commute.

Now note that

(σc σb σa)2(σa σb σc)
2 = σc σb σa σc σb σa σa σb σc σa σb σc

= σc σb σa σc σb σb σc σa σb σc

= σc σb σa σc σc σa σb σc

= σc σb σa σa σb σc

= σc σb σb σc

= σc σc

= ι.

Therefore,

(σc σb σa)2 =
(

(σa σb σc)
2
)−1

and
(σc σa σb)

2 =
(

(σb σa σc)
2
)

−1
,

so that
(σc σa σb)

2(σa σb σc)
2(σb σa σc)

2(σc σb σa)2 = ι,

and Thomsen’s relation holds.



Question 2. If x′ = ax + by + c and y′ = bx− ay + d with a2 + b2 = 1 are the equations for an isometry α,

show that α is a reflection if and only if

ac + bd + c = 0 and ad − bc − d = 0.

Solution: First we show that if m is a line through the origin making a directed angle θ with the positive
x-axis, and σx is a reflection in the x-axis, then

ρO,2θ = σm σx,

therefore σm = ρO,2θ σx.
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Let A be an arbitrary point in the plane and let A′ = σx(A) and A′′ = σm(A′), so that A′′ = σmσx(A).
From the figure we see that A′′(A) = ρO,2θ(A), and since A is arbitrary then

ρO,2θ = σm σx.

Since
σx(x, y) = (x,−y) and ρO,2θ(x, y) = (x cos 2θ − y sin 2θ, x sin 2θ + y cos 2θ),

then the equations of the reflection σm are given by

x′ = x cos 2θ + y sin 2θ

y′ = x sin 2θ − y cos 2θ

By translating, rotating, and translating back, the equations of a reflection in a line ` passing through the
point (h, k) and making a directed angle θ with the positive x-axis are given by

x′ = (x − h) cos 2θ + (y − k) sin 2θ + h

y′ = (x − h) sin 2θ − (y − k) cos 2θ + k

Now, if α is an isometry with equations x′ = ax + by + c and y′ = bx − ay + d with a2 + b2 = 1, by letting
a = cos 2θ and b = sin 2θ, then from the above we see that α is a reflection if and only if

c = h − ah − kb and d = k − bh + ka,

and this is the case if and only if

ac + bd + c = 0 and ad − bc − d = 0.



Question 3. If x′ = 3
5x + 4

5y and y′ = 4
5x − 3

5y are the equations for σm, then find the line m.

Solution: From the previous problem we see that the line m passes through the origin (0, 0), and

cos 2θ =
3

5
, and sin 2θ =

4

5
,

so that

cos 2θ = cos2 θ − sin2 θ =
3

5
and sin 2θ = 2 sin θ cos θ =

4

5

implies

cos θ =
2√
5

and sin θ =
1

5
.

Therefore the slope of m is tan θ =
1

2
, so the equation of the line is y =

1

2
x.

Alternatively, we can look for fixed points of σm, solving

x = x′ =
3

5
x +

4

5
y

y = y′ =
4

5
x − 3

5
y,

we find infinitely many solutions: y =
1

2
x, −∞ < x < ∞.

Question 4. If 2x′ = −
√

3x − y + 2 and 2y′ = x −
√

3y − 1 are the equations for ρP,θ, then find P and θ.

Solution: Writing the equations in the form

x′ = −
√

3

2
x − 1

2
y + 1

y′ =
1

2
x −

√
3

2
y − 1

2
,

we see that these are the equations of a rotation ρP,θ about the point P = (h, k) through the angle θ, where

cos θ = −
√

3

2
and sin θ =

1

2
,

so that θ =
5π

6
.

To find the point P = (h, k) we note that since P is a fixed point of the rotation ρP,θ, then

h = −
√

3

2
h − 1

2
k + 1

k =
1

2
h −

√
3

2
k − 1

2

with solution

h = 1 −
√

3

4
and k =

3

4
−

√
3

2
.



Question 5. If x′ = ax + by + c and y′ = bx − ay + d are equations for σm, then find the line m.

Solution: We find the fixed points P = (h, k) of σm by solving the system

h = ah + bk + c

k = bh − ak + d,

that is,

(1 − a)h − bk = c

−bh + (1 + a)k = d.

Since σm has infinitely many fixed points, this system must have infinitely many solutions, so the determinant
of the coefficient matrix must be zero, that is, a2 + b2 = 1.

In this case, the fixed points P = (h, k) must satisfy the equation (a− 1)h + bk = c, and the equation of the
line m is (a − 1)x + by + c = 0, provided a − 1 6= 0 or b 6= 0.

If a = 1 and b = 0, then first equation implies that c = 0, and the second equation gives 2k = d, so that the

equation of the line m in this case is y =
d

2
.

Question 6. Show that the equations for a glide reflection whose axis m passes through the origin with
angle of inclination θ and whose translation is along m through r units, r measured positive from the origin
into the first two quadrants or along the positive x-axis, and negative otherwise, are given by

x′ = x cos 2θ + y sin 2θ + r cos θ

y′ = x sin 2θ − y cos 2θ + r sin θ.

Solution: The the glide reflection α is the product of a reflection in m and a translation along m by r

units,
α = σm τ = τ σm.

The equations of the translation τ are

x′ = x + +r cos θ

y′ = y + r sin θ

while the equations of the reflection are

x′ = x cos 2θ + y sin 2θ

y′ = x sin 2θ − y cos 2θ,

and therefore the equations of the glide reflection α are

x′ = x cos 2θ + y sin 2θ + r cos θ

y′ = x sin 2θ − y cos 2θ + r sin θ.



Question 7. If a and b are lines in the plane, show that the following are equivalent:

(a) a = b or a and b are perpendicular,

(b) σaσb = σbσa,

(c) σb(a) = a,

(d) (σbσa)2 = ι,

(e) σbσa is either the identity or a halfturn.

Solution:

(a) =⇒ (b). If a = b, then σa = σb, so that σaσb = σbσa, while if a and b are perpendicular, then σaσb

is a rotation about the point of intersection P by an angle of π, that is, σaσb = σP . Similarly, σbσa is
a rotation about the point of intersection P by an angle of −π, that is, σbσa = σP , and σaσb = σbσa.

(b) =⇒ (c). If σaσb = σbσa, then
σbσaσb = σa,

and since
σbσaσb = σσb(a),

then a = σb(a).

(c) =⇒ (d). If σb(a) = a then
σbσaσb = σσb(a) = σa,

so that (σbσa)
2

= σbσaσbσa = ι.

(d) =⇒ (e). Suppose that (σbσa)2 = ι, if a and b are parallel, then σbσa = τ−→u is a translation, where
−→u is perpendicular to a and b and (σbσa)2 = τ2−→u = ι implies that −→u =

−→
0 , so that σbσa = ι.

If a and b are not parallel, then they intersect at a point P, and σbσa is a rotation about P by an angle
θ. Since (σbσa)

2
= ι is a rotation about P by an angle 2θ = 360, so that θ = 180, that is, σbσa is a

halfturn about P.

(e) =⇒ (a). Suppose that σbσa is either the identity or a halfturn.

If σbσa is the identity, then σbσa = ι implies σb = σa, so that a = b.

If σbσa is a halfturn, then it is a rotation about the point P of intersection of a and b by an angle of
180, so that the angle between a and b is 90, and a and b are perpendicular.

Question 8. If the isometry σP is a halfturn, show that given any two perpendicular lines m and n which
intersect at the point P, we have σP = σmσn.

Solution: Given a halfturn σP about the point P, if m and n are perpendicular lines that intersect at P,

then σmσn is a rotation about P by an angle of 180, that is, σmσn = σP .


