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Question 1. Given a point O and a vector −→u .

(a) Find the point Q such that
τ−→u σOτ−1

−→u
= σQ.

(b) What is the product σOτ−→u ?

Solution:

(a) Note that
(

τ−→u σOτ−1
−→u

) (

τ−→u σOτ−1
−→u

)

= τ−→u σO
2τ−1

−→u
= τ−→u τ−1

−→u
= ι,

and since σO 6= ι, then τ−→u σOτ−1
−→u

6= ι, so that τ−→u σOτ−1
−→u

is an involutive isometry.

Also, we have
(

τ−→u σOτ−1
−→u

)

τ−→u (O) = τ−→u σO(O) = τ−→u (O),

so that τ−→u (O) is a fixed point of τ−→u σOτ−1
−→u

.

Finally, note that if P is any other fixed point of τ−→u σOτ−1
−→u

, then

τ−→u σOτ−1
−→u

(P ) = P,

so that
σOτ−1

−→u
(P ) = τ−1

−→u
(P ),

and τ−1
−→u

(P ) is a fixed point of σO, so that

τ−1
−→u

(P ) = O,

that is, P = τ−→u (O) is the unique fixed point of τ−→u σOτ−1
−→u

.

Therefore, τ−→u σOτ−1
−→u

is an involutive isometry with unique fixed point τ−→u (O), so that

τ−→u σOτ−1
−→u

= σQ,

where Q = τ−→u (O).

(b) From the above, we see that
σOτ−→u = τ−→u σP

where P = τ−1
−→u

(O).



Question 2. In the triangle 4ABC, show that G is the centroid if and only if

σGσCσGσBσGσA = ι.

Solution: Let O be any point in P , and note that since

σGσA = τ
2
−→
AG

, σGσB = τ
2
−−→
BG

, σGσC = τ
2
−−→
CG

,

then
σGσCσGσBσGσA = ι

if and only if
τ
2(

−→
AG+

−−→
BG+

−−→
CG)

= ι,

that is, if and only if

2
(−→
AG +

−−→
BG +

−−→
CG

)

=
−→
0 ,

that is, if and only if −→
AO +

−−→
OG +

−−→
BO +

−−→
OG +

−−→
CO +

−−→
OG =

−→
0 ,

that is, if and only if
−−→
OG =

1

3

(−→
OA +

−−→
OB +

−−→
OC

)

,

that is, if and only if G is the centroid of 4ABC.

Question 3. Prove using halfturns, that if ABCD and EBFD are parallelograms, then EAFC is also a
parallelogram.

Solution: Note that
σAσBσCσD = ι and σDσF σBσE = ι

since ABCD and EBFD are parallelograms.

C

A E
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Therefore,
σAσBσCσDσDσF σBσE = ι2 = ι,

and since σ2
D = ι, then

σAσBσCσF σBσE = ι.

Since σBσCσF = σF σCσB , then
σAσF σCσBσBσE = ι,

and since σ2
B = ι, then

σAσF σCσE = ι,

so that EAFC is a parallelogram.



Question 4. Find all triangles such that three given noncollinear points are the midpoints of the sides of
the triangle.

Hint : Given P, Q, R then σRσQσP fixes a vertex of a unique triangle 4P ′Q′R′, as in the figure below.

Solution: Suppose that 4P ′Q′R′ is a triangle such that P, Q, and R are the respective midpoints of the
sides P ′Q′, P ′R′, and Q′R′.

P

P’

Q’ R’R

Q

We have
σQσRσP (P ′) = σQσR(Q′) = σQ(R′) = P ′,

so that P ′ is the unique fixed point of the isometry (half turn) σQσRσP .

Similarly,
σRσQσP (Q′) = σRσQ(P ′) = σR(R′) = Q′,

so that Q′ is the unique fixed point of the isometry (half turn) σRσQσP .

Finally,
σRσP σQ(R′) = σRσP (P ′) = σR(Q′) = R′,

so that R′ is the unique fixed point of the isometry (half turn) σRσP σQ.

Therefore the triangle 4P ′Q′R′ is uniquely determined by the three noncollinear points P, Q, and R.

Question 5. Given ∠ABC, construct a point P on AB and a point Q on BC such that PQ = AB and the
line PQ intersects the line BC at an angle of 60◦.

Hint : Take a point D such that [BD] ≡ [AB] and BD intersects BC at an angle of 60◦.

Solution: Draw the circle C1 with center B and radius |AB| hitting BC at E, then draw the circle C2 with
center E and radius |AB| intersecting C1 at D. Draw the line through D parallel to BC, hitting the line AB

at P, and then mark off the length |DP | on BC, hitting BC at Q.
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The points P on AB and Q on BC are the desired points, since DPQB is a parallelogram.



Question 6. What is the symmetry group of a rhombus that is not a square?

Solution: Let `1 and `2 be the diagonals of the nonsquare rhombus ABCD, as in the figure below.
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Since the diagonals of a parallelogram bisect each other, and a parallelogram is a rhombus if and only if its
diagonals are perpendicular, then the symmetries of the rhombus ABCD are

Σ = { ι, σO , σ`1 , σ`2 } .

The Cayley table or multiplication table for the group of symmetries of the rhombus is given below.

· ι σO σ`1 σ`2

ι ι σO σ`1 σ`2

σO σO ι σ`2 σ`1

σ`1 σ`1 σ`2 ι σO

σ`2 σ`2 σ`1 σO ι

Question 7. Prove that if σnσm fixes the point P and m 6= n, then the point P is on both lines m and n.

Solution: Suppose that P is a fixed point for the isometry σnσm, but P is not on both m and n, for
example, suppose P 6∈ m.

Since σnσm(P ) = P, then
σ2

nσm(P ) = σn(P ),

that is,
σm(P ) = σn(P ).

Now let
Q = σm(P ) = σn(P ),

and note that if Q = P, then σm(P ) = P and this implies that P ∈ m, which is a contradiction, therefore
Q 6= P.

Thus m is the perpendicular bisector of the segment joining P and Q = σm(P ), and n is the perpendicular
bisector of the segment joining P and Q = σn(P ), which contradicts the fact that m 6= n.

Therefore we must have P ∈ m. A similar argument shows that we must have P ∈ n also.



Question 8. Let m be a line with equation 2x + y = 1. Find the equations of σm.

Solution: If the equation of the line m is

ax + by + c = 0,

then the slope of m is −a

b
, while the slope of a line m⊥ which is perpendicular to m is

b

a
.

For P ∈ P , let P ′ = σm(P ), and suppose that P has Cartesian coordinates (x, y), while P ′ has Cartesian
coordinates (x′, y′).

P’

(   ,   )x y

(   ,   )x’ y’

m

m

O

P

Since P and P ′ are on m⊥, we have

y′ − y =
b

a
(x′ − x),

and since the midpoint O of PP ′ has coordinates

(

x + x′

2
,
y + y′

2

)

, and O is on the line m, then

a

(

x + x′

2

)

+ b

(

y + y′

2

)

+ c = 0.

Solving these equations for x′ and y′, the equations of the reflection σm are given by

x′ = x − 2a

a2 + b2
(ax + by + c)

y′ = y − 2b

a2 + b2
(ax + by + c) .

For the line 2x + y − 1 = 0, we have a = 2, b = 1, and c = −1, so the equations of the reflection in this line
are

x′ = x − 4

5
(2x + y − 1)

y′ = y − 2

5
(2x + y − 1).



Question 9. Suppose that the lines ` and m have equations x + y = 0 and x − y = 1, respectively. Find
the equations for σ`σm.

Solution: Let P = (x, y) and P ′ = (x′, y′) = σm(P ) and P ′′ = (x′′, y′′) = σ`(P
′), where for the lines m

and ` we have

m : x − y − 1 = 0, so that a = 1, b = −1, c = −1

` : x + y = 0, so that a = 1, b = 1, c = 0.

From the previous problem the equations of σm are

x′ = y + 1

y′ = x − 1,

while the equations of σ` are

x′′ = −y′

y′′ = −x′.

Therefore the equations of the isometry σ`σm are

x′′ = −x + 1

y′′ = −y − 1.

Question 10. Given triangles 4ABC and 4DEF, where 4ABC ≡ 4DEF where

A(0, 0), B(5, 0), C(0, 10), D(4, 2), E(1,−2), F (12,−4),

find the equations of the lines such that the product of reflections in these lines maps 4ABC to 4DEF.

Solution: Note first that

AB = DE = 5, AC = DF = 10, and BC = EF =
√

125,

so that 4ABC ≡ 4DEF by the SSS congruency theorem.

Let ` be the perpendicular bisector of the segment AD, since the midpoint of AD is the point

1

2
(0 + 4, 0 + 2) = (2, 1),

and AD has slope −1

2
, then the equation of ` is y = −2x + 5.

Therefore the reflection σ` has equations (see problem 8)

x′ = −3

5
x − 4

5
y + 4

y′ = −4

5
x +

3

5
y + 2.



The images of the vertices of 4ABC under the reflection σ` are

A′ = σ`(A) = (4, 2) = D, B′ = σ`(B) = (1,−2) = E, and C ′ = σ`(C) = (−4, 8)

as shown in the figure, and A′ and B′ are in the correct positions.
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Now let m be the perpendicular pisector of the segment CC ′′, since the slope of m is the slope of DE, which

is
4

3
, then the equation of m is 4x − 3y − 10 = 0.

Therefore the reflection σm has equations (again, see problem 8)

x′′ = − 7

25
x′ +

24

25
y′ +

16

5

y′′ =
24

25
x′ − 7

25
y′ − 12

5
,

and the images of the vertices of 4A′B′C ′ under the reflection σm are

A′′ = σm(A′) = (4, 2) = D, B′′ = σm(B′) = (1,−2) = E, and C ′′ = σm(C ′) = (12,−4) = F.

Therefore the image of 4ABC under the isometry

α = σmσ`

is the triangle 4DEF.


