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Question 1. Which of the mappings defined on the Cartesian plane P by the equations below are transfor-
mations ?

(a) α(x, y) = (x3, y3) (b) β(x, y) = (x, y2)

(c) γ(x, y) = (3y, x + 2) (d) δ(x, y) = (x + y + 3, 2x + 2y − 1)

Solution:

(a) For any (x′, y′), the equation (x′, y′) = α(x, y) = (x3, y3) has a unique solution

x =
3
√

x′, y = 3

√

y′,

and so α−1 exists and
α−1(x, y) =

(

3
√

x, 3
√

y
)

.

(b) If (x1, y1) ∈ R
2, and (x2, y2) ∈ R

2 with x1 = x2, but y2 = −y1 6= y1, then

β(x1, y1) = (x1, y
2
1) = (x2, y

2
2) = β(x2, y2),

so that β is not one-to-one, and so is not a transformation.

(c) Given any (x′, y′) ∈ R
2, the system of equations

x′ = 3y

y′ = x + 2

has the unique solution

x = y′ − 2

y =
1

3
x′

and therefore γ is a transformation.

(d) For any (x′, y′) ∈ R
2, the system of equations

x′ − 3 = x + y

y′ + 1 = 2x + 2y

has a solution if and only if y′ + 1 = 2x′ − 6, and therefore γ is not a transformation.



Question 2. Let α(x, y) = (x + 1, y + 2x) and β = (x + y − 1, y) be two mappings defined on the Cartesian
plane P .

(a) Show that α and β are transformations of P .

(b) Find α β and β α.

(c) Find α−1 and β−1.

Solution:

(a) For (x′, y′) ∈ R
2, the system of equations

x′ = x + 1

y′ = y + 2x

has a unique solution

x = x′ − 1

y = y′ − 2x′ + 2 (α−1)

so that α is a transformation.

Also, for (x′, y′) ∈ R
2, the system of equations

x′ = x + y − 1

y′ = y

has a unique solution

x = x′ − y′ + 1

y = y′ (β−1)

so that β is a transformation.

(b) For any (x, y) ∈ R
2, we have

β(α(x, y)) = β(x + 1, y + 2x) = (3x + y, 2x + y),

and
α(β(x, y)) = α(x + y − 1, y) = (x + y, 2x + 3y − 2).

(c) From (α) we have
α−1(x, y) = (x − 1, y − 2x + 2),

while from (β) we have
β−1(x, y) = (x − y + 1, y).



Question 3.

(a) Find the image of the line 2x + 3y = 1 under the affine transformation

α(x, y) = (x + y + 1, x − y + 2).

(b) Find the fixed points of α.

Solution:

(a) If (x′, y′) = α(x, y) = (x + y + 1, x − y + 2), then

x =
1

2
x′ +

1

2
y′ − 3

2

y =
1

2
x′ − 1

2
y′ +

1

2
,

and the point (x, y) is on the line 2x + 3y = 1 if and only if

x′ + y′ − 3 +
3

2
x′ − 3

2
y′ +

3

2
= 1,

that is,
5

2
x′ − 1

2
y′ =

5

2
.

Therefore (x′, y′) is on the image of the line 2x + 3y = 1 under the affine transformation α(x, y) if and
only if

5x′ − y′ = 5.

(b) If (x0, y0) is a fixed point of α, then

(x0, y0) = α(x0, y0) = (x0 + y0 + 1, x0 − y0 + 2),

so that y0 = −1 and x0 = 2y0 − 2 = −4, and (−4,−1) is the unique fixed point of α.

Question 4.

(a) Prove that any affine transformation is a collineation.

(b) Show that α(x, y) = (2x3 + 1, y3) is a transformation of the plane but is not a collineation.

Solution:

(a) Let (x′, y′) = α(x, y) = (ax + by + c, dx + ey + f) be an affine transformation, then ∆ = ae − bd 6= 0,

and

x =
1

∆
[e(x′ − c) − b(y′ − f)]

y = − 1

∆
[d(x′ − c) − a(y′ − f)] ,

so that (x, y) is on a line Ax + By + C = 0 if and only if

A

∆
[e(x′ − c) − b(y′ − f)] − B

∆
[d(x′ − c) − a(y′ − f)] + C = 0,

and the image of a line Ax + By + C = 0 is also a line A′x′ + B′y′ + C ′ = 0, where

A′ =
1

∆
(Ae − Bd), B′ = − 1

∆
(Ab − Ba), C ′ =

1

∆
(−Aec + Abf + Bcd − Baf) + C.



(b) For any (x′, y′) ∈ R
2, the system of equations

x′ = 2x3 + 1

y′ = y3

has a unique solution

x =

(

1

2
(x′ − 1)

)1/3

y = y′1/3
,

and α is a transformation. Clearly the point (x, y) is on the line ax + by + c = 0 if and only if

a

(

1

2
(x′ − 1)

)1/3

+ by′1/3
+ c = 0

and {(x′, y′) | ax + by + c = 0} is not the equation of a line in the plane, so α is not a collineation.

Question 5. Let α and β be two involutive transformations of the Cartesian plane P .

(a) Prove that α β is involutive if and only if α β = β α.

(b) Assume that α, β, ι are distinct transformations such that

α β = β α = γ.

Let Γ = {ι, α, β, γ}. Prove that Γ is a commutative subgroup of G, the group of all transformations
on the plane P (construct the multiplication table).

Solution:

(a) If α and β are involutions, then
ι = (αβ)2 = αβαβ

if and only if
α2βαβ2 = αιβ = αβ,

that is, if and only if
ιβαι = αβ,

that is, if and only if
βα = αβ.

(b) Note that γ2 = (αβ)2 = ι from part (a), so that γ is an involution. Therefore

ι−1 = ι, α−1 = α, β−1 = β, and γ−1 = γ,

so that Γ is closed under taking inverses.

Also,
αβ = βα = γ, αγ = α2β = β = βα2 = γα, βγ = β2α = α = αβ2 = γβ,

and Γ is closed under multiplication and multiplication is commutative. Therefore Γ is a subgroup of
G.



Question 6. Let α(x, y) = (ax+ by, cx+dy) be an affine transformation of P . Prove that α is an involution
if and only if

a2 + bc = 1

ab + bd = 0

ac + cd = 0

bc + d2 = 1.

Note: The matrix A =

(

a b

c d

)

is called the matrix of the transformation α. The conditions above say that

α is an involution if and only if A2 =

(

1 0
0 1

)

.

Solution: For each (x′, y′), the system of equations

x′ = ax + by

y′ = cx + dy

has a unique solution if and only if the coefficient matrix A =

(

a b

c d

)

has a nonzero determinant, that is if

and only if ad − bc 6= 0.

If we write (x′, y′) = α(x, y) = (ax + by, cx + dy) in vector form

(

x′

y′

)

=

(

a b

c d

) (

x

y

)

and if (x′′, y′′) = α(x′, y′), then

(

x′′

y′′

)

=

(

a b

c d

) (

x′

y′

)

=

(

a b

c d

) (

a b

c d

) (

x

y

)

=

(

a b

c d

)2 (

x

y

)

.

Therefore α is an involution if and only if

(

a b

c d

)2

=

(

1 0
0 1

)

,

that is, if and only if
(

a2 + bc ab + bd

ac + cd bc + d2

)

=

(

1 0
0 1

)

,

that is, if and only if

a2 + bc = 1

ab + bd = 0

ac + cd = 0

bc + d2 = 1.



Question 7. Let α be an isometry of P which admits an invariant line ` (that is, α(`) = `) and a fixed point
P ∈ P . Prove that there is a point Q ∈ ` such that α(Q) = Q and a line `′ through P such that α(`′) = `′.

Solution: If P ∈ `, then we may take Q = P so that α(Q) = α(P ) = P = Q, and `′ the line through Q

which is perpendicular to `. Since α is an isometry, it preserves perpendicularity so that α(`′) is perpendicular
to α(`) = `, so that α(`′) is parallel to `′. Since they both pass through P = α(P ), then α(`′) = `′.

If P is not on `, drop a perpendicular from P to the line `, hitting ` at Q. Now, α(`) = ` so that α(Q) ∈ `,

and α is an isometry, so that
d(P, Q) = d(α(P ), α(Q)) = d(P, α(Q)).

If Q 6= α(Q), then since the hypotenuse of the right triangle 4P Q α(Q) is the longest side of this right
triangle, we have d(P, Q) < d(P, α(Q)), which is a contradiction, therefore, α(Q) = Q.

Now let `′ be the line passing through the points P = α(P ) and Q = α(Q), since α preserves perpendicularity,
then α(`′) is perpendicular to α(`) = `, so that `′ is parallel to α(`′) and both these lines pass through P

and Q, so that α(`′) = `′.

Question 8. If a circle is invariant under the isometry α then its center is a fixed point of α.

Solution: Let P be any point on the circle C with center O and radius a, if C is invariant under the isometry
α, then α(P ) is on C for every P on C. Therefore,

d(O, P ) = d(α(O), α(P )) = a

for every P ∈ C.

Since α maps the circle C onto the circle, then given any point Q on the circle, there exists a point P on the
circle such that Q = α(P ), so that

d(α(O), Q) = d(α(O), α(P )) = a,

that is,
d(α(O), Q) = a

for each Q on the circle C. This says that each point on the circle is equidistant from the point α(O), that
is, α(O) = O, the center of the circle. Thus α(O) = O and the center O is a fixed point of the isometry α.

Question 9. Let α 6= ι be an involutive isometry, show that α has at least one fixed point.

Solution: Suppose that α is an involutive isometry and let P be any point in the plane P , if α(P ) = P

then we are done.

If P is not a fixed point of α, let M be the midpoint of the segment from P to α(P ), then

d(M, P ) = d(M, α(P )),

and
d(α(M), α(P )) = d(α(M), α2(P )) = d(α(M), P ),

therefore, α(M) is on the perpendicular bisector of the segment from P to α(P ).

Since α maps the line ` = `Pα(P ) onto itself, then α(M) is also on the the line `, so that α(M) = M and M

is a fixed point of α.



Question 10. Let α be an isometry of P and let ` be the perpendicular bisector of the segment [AB]. Prove
that α(`) is the perpendicular bisector of the segment [α(A) α(B)].

Solution: Let M be the midpoint of the segment [A, B], then

d(M, A) = d(M, B)

and since α is an isometry, then

d(α(M), α(A)) = d(M, A) = d(M, B) = d(α(M), α(B)),

so that α(M) is on the perpendicular bisector of [α(A), α(B)].

Similarly, if P is any other point on the perpendicular bisector of the segment [AB], then

d(α(A), α(P )) = d(A, P ) = d(B, P ) = d(α(B), α(P )),

so that α(P ) is also on the perpendicular bisector of [α(A), α(B)]. Since ` is the line passing through M and
P, then α(`) is the line passing through α(M) and α(P ), that is, α(`) is the perpendicular bisector of the
segment [α(A) α(B)].


