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Question 1. Let u and v be nonzero vectors, both parallel to a line `.

(a) Show that u + v is parallel to `.

(b) Show that ku is parallel to ` for each k ∈ R, k 6= 0.

Solution:

(a) Let A be an arbitrary point in the Euclidean point space E , and apply the vector −→u in the translation

space V of E to the point A to get the point B such that
−−→
AB = −→u . Next apply the vector −→v to the

point B to get the point C such that
−−→
BC = −→v , since −→u and −→v are parallel to `, then the directed line

segments (A, B) and (B, C) are also parallel to `, and therefore have the same support line, thus, the

points A, B, and C are collinear. From the definition of vectors in V , this means that −→u + −→v =
−→
AC

is parallel to ` also.

(b) Assume that k > 0, and let A an arbitrary point in the Euclidean point space E , and apply the vector
−→u in the translation space V of E to the point A to get the point B such that

−−→
AB = −→u . Let C be

the point on the support line of the directed line segment (A, B) such that |AC| = k|AB|. From the

definition of scalar multiplication In V , we have
−→
AC = k−→u , and the directed line segment (A, C) is

parallel to `, that is, k−→u =
−→
AC is parallel to ` also.

Question 2. Let u and v be nonzero vectors, both parallel to a plane Π.

(a) Show that u + v is parallel to Π.

(b) Show that ku is parallel to Π for each k ∈ R, k 6= 0.

Solution:

(a) Let (−→e 1,
−→e 2) be a planar direction for the plane Π, then we can write

−→u = a−→e 1 + b−→e 2 and −→v = c−→e 1 + d−→e 2

for some scalars a, b, c, d, so that

−→u + −→v = (a + c)−→e 1 + (b + d)−→e 2,

and −→u + −→v is also parallel to the plane Π.

(b) Similarly, if k 6= 0, then k−→u = ka−→e 1 + kb−→e 2, so that k−→u is parallel to the plane Π.



Question 3. Given an arbitrary point O, let A′, B′, C ′, be the midpoints of the sides BC, AC, and AB of
4ABC, show that

−→
OA +

−−→
OB +

−−→
OC =

−−→
OA′ +

−−→
OB′ +

−−→
OC ′.

Solution: In the figure

O

A’
CB

C’ B’

A

we have
−−→
OA′ =

−−→
OB +

1

2

−−→
BC =

−−→
OB +

1

2
(
−−→
OC −

−−→
OB) =

1

2
(
−−→
OB +

−−→
OC),

and similarly
−−→
OB′ =

1

2
(
−→
OA +

−−→
OC) and

−−→
OC ′ =

1

2
(
−→
OA +

−−→
OB),

and therefore −−→
OA′ +

−−→
OB′ +

−−→
OC ′ =

−→
OA +

−−→
OB +

−−→
OC.

Question 4. Given 4A B C and 4A′ B′ C ′, let G and G′ be their centroids, respectively. Show that

−−→
GG′ =

1

3

(−−→
AA′ +

−−→
BB′ +

−−→
CC ′

)

.

Solution: If we introduce the point O ∈ E , then

−−→
GG′ =

−−→
OG′ −

−−→
OG =

1

3

(−−→
OA′ +

−−→
OB′ +

−−→
OC ′

)

−
1

3

(−→
OA +

−−→
OB +

−−→
OC
)

=
1

3

(−−→
OA′ −

−→
OA
)

+
1

3

(−−→
OB′ −

−−→
OB

)

+
1

3

(−−→
OC ′ −

−−→
OC
)

=
1

3

(−−→
AA′ +

−−→
BB′ +

−−→
CC ′

)

.

Question 5. Show using vectors that the segment joining the midpoints of the nonparallel sides of a
trapezoid is parallel to either base and congruent to half the sum of the bases.

Solution: In the figure

C

FE

A B

D

we have
−−→
EF =

−→
EA +

−−→
AB +

−−→
BF and

−−→
EF =

−−→
ED +

−−→
DC +

−−→
CF so that 2

−−→
EF =

−−→
AB +

−−→
DC, since

−→
EA +

−−→
ED =

−→
0

and
−−→
BF +

−−→
CF =

−→
0 , therefore

−−→
EF =

1

2

(−−→
AB +

−−→
DC

)

.



Question 6. If the point P lies in the plane of 4ABC, but is distinct from the vertices of the triangle,
and the parallelograms PBA′C, PCB′A, PAC ′B are completed, show that the segments [AA′], [BB′], and
[CC ′] bisect each other.

Solution: In the figure we have completed the parallelograms PBA′C and PCB′A.

P

A

B

A’

C

B’

Let Q and R be the midpoints of the segements AA′ and BB′, respectively (not shown). then

−−→
PQ =

−→
PA +

1

2

−−→
AA′

=
−→
PA +

1

2

(−−→
PA′ −

−→
PA
)

=
1

2

−→
PA +

1

2

(−−→
PB +

−−→
BA′

)

=
1

2

−→
PA +

1

2

(−−→
PB +

−−→
PC
)

,

and
−−→
PQ =

1

2

(−→
PA +

−−→
PB +

−−→
PC
)

.

Also,

−→
PR =

−−→
PB +

1

2

−−→
BB′

=
−−→
PB +

1

2

(−−→
PB′ −

−−→
PB

)

=
1

2

−−→
PB +

1

2

(−−→
PC +

−−→
CB′

)

=
1

2

−−→
PB +

1

2

(−−→
PC +

−→
PA
)

,

and
−→
PR =

1

2

(−→
PA +

−−→
PB +

−−→
PC
)

.

Therefore Q = R, and the line segments AA′ and BB′ bisect each other. Similarly, the line segments AA′

and CC ′ bisect each other.



Question 7. Suppose that the points A′, B′, C ′ lie on the sides [BC], [CA], and [AB] of 4ABC, respec-
tively, and

A′B

A′C
=

B′C

B′A
=

C ′A

C ′B
.

(a) Show that the centroids of 4A′B′C ′ and 4ABC coincide.

(b) If the parallelograms AC ′C ′′C and AB′B′′B are completed, show that B′C ′′ and C ′B′′ are parallel to
the median of 4ABC through A.

Solution: In the figure

CA’

B’

C’

A

B

let A′, B′, C ′ be points on the sides [BC], [CA], and [AB] of 4ABC, respectively, such that

A′B

A′C
=

B′C

B′A
=

C ′A

C ′B
= k,

where k > 0 (if k = 0, then the triangles coincide).

(a) We know from Question 4 that if G and G′ are the centroids of 4ABC and 4A′B′C ′, respectively,
then

−−→
GG′ =

1

3

(−−→
AA′ +

−−→
BB′ +

−−→
CC ′

)

,

and in order to show that the centroids coincide, we only need to show that

−−→
AA′ +

−−→
BB′ +

−−→
CC ′ =

−→
0 .

Note that since
A′B

A′C
= k, then

−−→
BA′ = k

−−→
A′C, so that

−−→
BC =

−−→
BA′ +

−−→
A′C =

k + 1

k
·
−−→
BA′

and

−−→
AA′ =

−−→
AB +

−−→
BA′ =

−−→
AB +

k

k + 1

−−→
BC. (1)

Also, note that since
B′C

B′A
= k, then

−−→
CB′ = k

−−→
B′A, so that

−→
CA =

−−→
CB′ +

−−→
B′A =

k + 1

k
·
−−→
CB′

and

−−→
BB′ =

−−→
BC +

−−→
CB′ =

−−→
BC +

k

k + 1

−→
CA. (2)



Finally, note that since
C ′A

C ′B
= k, then

−−→
AC ′ = k

−−→
C ′B, so that

−−→
AB =

−−→
AC ′ +

−−→
C ′B =

k + 1

k
·
−−→
AC ′

and

−−→
CC ′ =

−→
CA +

−−→
AC ′ =

−→
CA +

k

k + 1

−−→
AB. (3)

Adding (1), (2), and (3), we have

−−→
AA′ +

−−→
BB′ +

−−→
CC ′ =

(−−→
AB +

−−→
BC +

−→
CA
)

+
k

k + 1

(−−→
BC +

−→
CA +

−−→
AB
)

=
−→
0

since
−−→
AB +

−−→
BC +

−→
CA =

−→
0 .

(b) In the figure below we have completed the parallelograms AC ′C ′′C and AB′B′′B, and let M be the
midpoint of the side BC. We want to show that C ′B′′ and B′C ′′ are both parallel to AM.

C

B’

A

B’’

MA’
C’’

C’

B

Let t =
AB′

B′C
, so that

−−→
AB′ = t

−−→
B′C, then

−→
AC =

−−→
AB′ +

−−→
B′C = (1 + t)

−−→
B′C,

and
−−→
B′C =

1

1 + t

−→
AC,

that is,

−−→
AB′ =

−→
AC −

−−→
B′C =

t

1 + t

−→
AC. (4)

Also, t =
AB′

B′C
=

C ′B

AC ′
, so that

−−→
C ′B = t

−−→
AC ′, and

−−→
AB =

−−→
AC ′ +

−−→
C ′B = (1 + t)

−−→
AC ′

so that
−−→
AC ′ =

1

1 + t

−−→
AB.

Therefore,

−−→
AC ′′ =

−−→
AC ′ +

−−−→
C ′C ′′ =

−−→
AC ′ +

−→
AC =

1

1 + t

−−→
AB +

−→
AC. (5)

Subtracting (4) from (5) we have

−−−→
B′C ′′ =

−−→
AC ′′ −

−−→
AB′ =

1

1 + t

(−−→
AB +

−→
AC
)

=
2

1 + t

−−→
AM,

and B′C ′′ is parallel to the median through A. Similarly, C ′B′′ is parallel to the median through A.



Question 8. If A1, A2, A3, A4, A5, A6 are the midpoints of consecutive sides of a hexagon, show that
4A1A3A5 and 4A2A4A6 have the same centroid.

Solution: Given the hexagon ABCDEF in the figure, let

A1 = midpoint of AB, A2 = midpoint of BC, A3 = midpoint of CD,

A4 = midpoint of DE, A5 = midpoint of EF, A6 = midpoint of FA,

and let O be an arbitrary point in the Euclidean point space E .

O

1

A2

A3

A4

A 5

A6

A B

C

DE

F

A

Let Godd be the centroid of 4A1A3A5 and Geven be the centroid of 4A2A4A6, then

−−→
OGodd =

1

3

(−−→
OA1 +

−−→
OA3 +

−−→
OA5

)

=
1

3

(−→
OA +

−−→
OB

2

)

+
1

3

(−−→
OC +

−−→
OD

2

)

+
1

3

(−−→
OE +

−−→
OF

2

)

=
1

3

(−→
OA +

−−→
OF

2

)

+
1

3

(−−→
OB +

−−→
OC

2

)

+
1

3

(−−→
OD +

−−→
OE

2

)

=
1

3

(−−→
OA6 +

−−→
OA2 +

−−→
OA4

)

=
−−→
OGeven.

Question 9. If P, Q, R, S are the midpoints of the edges AB, BC, CD, DA, respectively, of a tetrahedron
ABCD, show that PR and QS bisect each other at the centroid of the tetrahedron.

Solution: In the figure, let O be an arbitrary point in the Euclidean point space E , and let G be the
centroid of the tetrahedron.

O

A

R

S
P

C

D

B Q



From the definition of the centroid of the tetrahedron, we have

−−→
OG =

1

4

(−→
OA +

−−→
OB +

−−→
OC +

−−→
OD

)

=
1

2

(−→
OA +

−−→
OB

2

)

+
1

2

(−−→
OC +

−−→
OD

2

)

=
1

2

(−−→
OP +

−−→
OR
)

and G is the midpoint of the segment PR.

Similarly,

−−→
OG =

1

4

(−→
OA +

−−→
OB +

−−→
OC +

−−→
OD

)

=
1

2

(−−→
OB +

−−→
OC

2

)

+
1

2

(−→
OA +

−−→
OD

2

)

=
1

2

(−−→
OQ +

−→
OS
)

and G is the midpoint of the segment QS.

Question 10. Let ABCD and A′B′C ′D′ be two parallelograms, not necessarily coplanar, show that the
midpoints I, J, K, L, of [AA′], [BB′], [CC ′], [DD′], respectively, are the vertices of a parallelogram.

Solution: In the figure, ABCD and A′B′C ′D′ are parallelograms, and O is an arbitrary point in the
Euclidean point space E .

O

B’

A

B C

C’

D’
A’

D
I

J
K

L

Note first that
−−→
AB =

−−→
DC, and

−−→
AD =

−−→
BC,

−−−→
A′B′ =

−−−→
D′C ′, and

−−−→
A′D′ =

−−−→
B′C ′.

Now

−→
IJ =

−→
OJ −

−→
OI =

1

2

(−−→
OB +

−−→
OB′

)

−
1

2

(−→
OA +

−−→
OA′

)

=
1

2

(−−→
OB −

−→
OA
)

+
1

2

(−−→
OB′ −

−−→
OA′

)

=
1

2

(−−→
AB +

−−−→
A′B′

)

.



Also,

−−→
LK =

−−→
OK −

−→
OL =

1

2

(−−→
OC +

−−→
OC ′

)

−
1

2

(−−→
OD +

−−→
OD′

)

=
1

2

(−−→
OC −

−−→
OD

)

+
1

2

(−−→
OC ′ −

−−→
OD′

)

=
1

2

(−−→
DC +

−−−→
D′C ′

)

.

Since
−−→
AB =

−−→
DC and

−−−→
A′B′ =

−−−→
D′C ′, then

−→
IJ =

−−→
LK, so that IJ is parallel to LK and |IJ | = |LK|.

Similarly,

−→
IL =

−→
OL −

−→
OI =

1

2

(−−→
OD +

−−→
OD′

)

−
1

2

(−→
OA +

−−→
OA′

)

=
1

2

(−−→
OD −

−→
OA
)

+
1

2

(−−→
OD′ −

−−→
OA′

)

=
1

2

(−−→
AD +

−−−→
A′D′

)

,

and

−−→
JK =

−−→
OK −

−→
OJ =

1

2

(−−→
OC +

−−→
OC ′

)

−
1

2

(−−→
OB +

−−→
OB′

)

=
1

2

(−−→
OC −

−−→
OB

)

+
1

2

(−−→
OC ′ −

−−→
OB′

)

=
1

2

(−−→
BC +

−−−→
B′C ′

)

.

Since
−−→
AD =

−−→
BC and

−−−→
A′D′ =

−−−→
B′C ′, then

−→
IL =

−−→
JK, so that IL is parallel to JK and |IL| = |JK|.

Therefore, IJKL is a parallelogram. Note that the above did not depend on the way the figure was drawn.
The figure was drawn to make the process more transparent.

Question 11. Show that the angle bisectors of 4ABC can be used to construct a new triangle if and only
if 4ABC is equilateral.

Solution: Clearly, if 4ABC is equilateral, then the angle bisectors are the perpendicular bisectors of the
sides, and all have the same length. Therefore the angle bisectors can be used to construct a new triangle,
and in fact, an equilateral triangle.

Conversely, let the angle bisectors of the angles at A, B, and C hit the opposite sides at the points A′, B′,

and C ′, respectively, as in the figure, and let a = BC, b = AC, and c = AB.

C

A

C’ B’

B
A’



Since the internal angle bisectors divide the opposite side (internally) in the ratio of the adjacent sides, then
we have

BA′

A′C
=

AB

AC
=

c

b
,

AB′

B′C
=

AB

BC
=

c

a
,

AC ′

C ′B
=

AC

BC
=

b

a
,

and if the angle bisectors AA′, BB′, CC ′ can be used to form a new triangle, then we must have

−−→
AA′ +

−−→
BB′ +

−−→
CC ′ =

−→
0 .

Since

−−→
AA′ =

−−→
AB +

−−→
BA′ =

−−→
AB +

c

b + c

−−→
BC

−−→
BB′ =

−−→
BC +

−−→
CB′ =

−−→
BC +

a

a + c

−→
CA

−−→
CC ′ =

−→
CA +

−−→
AC ′ =

−→
CA +

b

a + b

−−→
AB,

then
−−→
AB +

−−→
BC +

−→
CA +

c

b + c

−−→
BC +

a

a + c

−→
CA +

b

a + b

−−→
AB =

−→
0 ,

and since

−−→
AB +

−−→
BC +

−→
CA =

−→
0 , (†)

this implies that

c

b + c

−−→
BC +

a

a + c

−→
CA +

b

a + b

−−→
AB =

−→
0 . (††)

Subtracting
c

b + c
(†) from (††), we have

(

a

a + c
−

c

b + c

)

−→
CA +

(

b

a + b
−

c

b + c

)

−−→
AB =

−→
0 ,

and since the set of vectors
{−−→

AB,
−→
CA

}

is linearly independent, then

a

a + c
−

c

b + c
= 0 and

b

a + b
−

c

b + c
= 0,

that is, c2 = ab and b2 = ac, so that b2 − c2 = ac − ab = −a(b− c).

If b 6= c, this implies that b + c = −a, that is, a + b + c = 0, which is impossible. Therefore b = c, and then
ab = c2 = b2 implies a = b, so that 4ABC is equilateral.



Question 12. Let X1, X2, . . . , Xn be n ≥ 2 points on a circle C, and let G be their centroid. Denote by
Y1, Y2, . . . , Yn the second points of intersection of the lines X1G, X2G, . . . , XnG with the circle, respectively.

(a) Show that
X1G

GY1

+
X2G

GY2

+ · · · +
XnG

GYn

= n.

(b) Show that the set of points P inside the circle C that satisfy

X1P

PY1

+
X2P

PY2

+ · · · +
XnP

PYn

= n

is the circle with diameter OG, where O is the center of the circle C.

Solution:

(a) Let r be the radius of the circle C and let O be its center. From the Power of a Point, we know that if
P is any point inside C, then for any two chords AB and XY intersecting at the point P, we have

AP · PB = XP · PY.

A

X B

Y

O

P

In the figure we apply this result to a chord XY and the diameter that both pass through P, then

XP · PY = (r + OP )(r − OP ) = r2 − OP 2,

and therefore
n
∑

k=1

XkP

PYk

=
n
∑

k=1

XkP 2

XkP · PYk

=
1

r2 − OP 2

n
∑

k=1

XkP 2. (∗)

Since each of the points Xk are on the circle, then we have

XkP 2 = ‖
−−→
XkP‖2 = ‖

−−→
OP −

−−→
OXk‖

2

= ‖
−−→
OP‖2 − 2

−−→
OP ·

−−→
OXk + ‖

−−→
OXk‖

2

= OP 2 + r2 − 2
−−→
OP ·

−−→
OXk ,

where
−−→
OP ·

−−→
OXk is the Euclidean inner product of the two vectors

−−→
OP and

−−→
OXk .

Therefore,
n
∑

k=1

XkP 2 = n(OP 2 + r2) − 2
−−→
OP ·

n
∑

k=1

−−→
OXk ,

and by definition of the centroid G, we have

n
∑

k=1

−−→
OXk = n

−−→
OG,



so that

n
∑

k=1

XkP 2 = n
(

OP 2 + r2 − 2
−−→
OP ·

−−→
OG
)

, (∗∗)

Setting P = G, we have
n
∑

k=1

XkG2 = n(r2 − OG2),

so that
n
∑

k=1

XkG

GYk

=
1

r2 − OG2

n
∑

k=1

XkG2 =
n(r2 − OG2)

r2 − OG2
= n.

(b) The argument above which lead to (∗∗) is valid for any point P inside the circle, and clearly the
equation

X1P

PY1

+
X2P

PY2

+ · · · +
XnP

PYn

= n

is equivalent to

‖
−−→
OP‖2 =

−−→
OP ·

−−→
OG,

which is equivalent to

−−→
OP ·

−−→
PG =

−−→
OP ·

(−−→
OG −

−−→
OP
)

=
−−→
OP ·

−−→
OG − ‖

−−→
OP‖2 = 0,

that is, that the vectors
−−→
OP and

−−→
PG are perpendicular, and this condition defines the circle with

diameter OG.


