

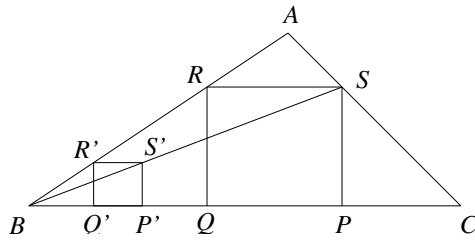
MATH 243 Winter 2008
Geometry II: Transformation Geometry

Solutions to Sample Quiz Problems

Department of Mathematical and Statistical Sciences
University of Alberta

Question 1. Describe how to inscribe a square in a triangle.

SOLUTION: Given $\triangle ABC$, as in the figure,



from a point R' on AB , drop a perpendicular $R'Q'$ to BC , then complete the square $P'Q'R'S'$ with edge length $R'Q'$ and with $P'Q'$ in BC .

Next, draw the line BS' meeting AC at S , and drop the perpendicular SP to BC . Draw the line RS parallel to BC meeting AB at R , and note that $RS \perp SP$.

Finally, complete the parallelogram $PQRS$ with edges RS and SP , then $PQRS$ is the desired square.

To see this, note that since $QP \parallel RS$, we have $\angle SPQ = 180 - \angle PSR = 90$, so that PQ is in the side BC of $\triangle ABC$. Thus $PQRS$ is a rectangle, and we need only show that $PQRS$ is a square.

Since both $R'S'$ and RS are parallel to BC , then they are parallel to each other, and triangles $\triangle BRS$ and $\triangle BR'S'$ are similar, so that

$$\frac{RS}{R'S'} = \frac{BS}{BS'}.$$

Also, $S'P'$ and SP are parallel, so that triangles $\triangle BPS$ and $\triangle BP'S'$ are similar, so that

$$\frac{PS}{P'S'} = \frac{BS}{BS'}.$$

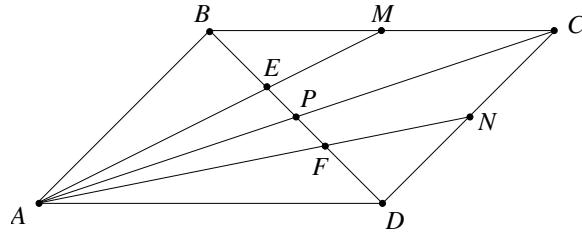
Therefore,

$$\frac{PS}{P'S'} = \frac{RS}{R'S'},$$

and since $P'S' = R'S'$, we get $PS = RS$, that is, the rectangle $PQRS$ is a square.

Question 2. Line segments are drawn from a vertex of a parallelogram to the midpoints of the opposite sides. Use vectors to show that they trisect a diagonal.

SOLUTION: In the figure, $ABCD$ is a parallelogram, M is the midpoint of AB and N is the midpoint of CD . Since the diagonals of the parallelogram bisect each other then P is the midpoint of both AC and BD .



Now note that AM and BP are medians of $\triangle ABC$, so that E is the centroid of $\triangle ABC$, and therefore

$$\overrightarrow{BE} = \frac{2}{3}\overrightarrow{BP} = \frac{2}{3}\left(\frac{1}{2}\overrightarrow{BD}\right) = \frac{1}{3}\overrightarrow{BD}.$$

Similarly, AN and DP are medians of $\triangle ADC$, so that F is the centroid of $\triangle ADC$, and therefore

$$\overrightarrow{FD} = \frac{2}{3}\overrightarrow{PD} = \frac{2}{3}\left(\frac{1}{2}\overrightarrow{BD}\right) = \frac{1}{3}\overrightarrow{BD}.$$

Finally,

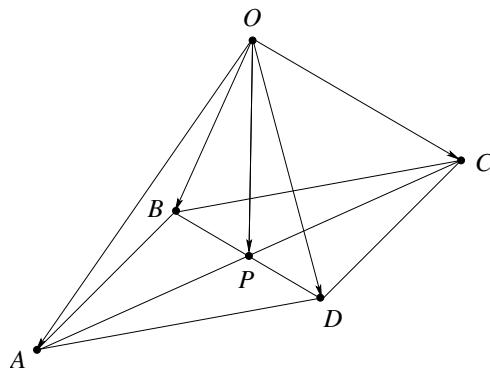
$$\overrightarrow{EF} = \overrightarrow{EB} + \overrightarrow{BD} + \overrightarrow{DF} = -\frac{1}{3}\overrightarrow{BD} + \overrightarrow{BD} - \frac{1}{3}\overrightarrow{BD} = \frac{1}{3}\overrightarrow{BD}.$$

Therefore the line segments AM and AN trisect the diagonal BD of the parallelogram $ABCD$.

Question 3. $ABCD$ is a parallelogram and P is the point of intersection of its diagonals. If O is an origin (not necessarily in the plane of the figure), show that

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4 \cdot \overrightarrow{OP}.$$

SOLUTION: In the figure,



note that since the diagonals of a parallelogram bisect each other, then

$$\overrightarrow{OP} = \overrightarrow{OA} + \frac{1}{2} \cdot \overrightarrow{AC} = \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OC} \right),$$

and

$$\overrightarrow{OP} = \overrightarrow{OB} + \frac{1}{2} \cdot \overrightarrow{BD} = \frac{1}{2} (\overrightarrow{OB} + \overrightarrow{OD}).$$

Adding these two equations, we get

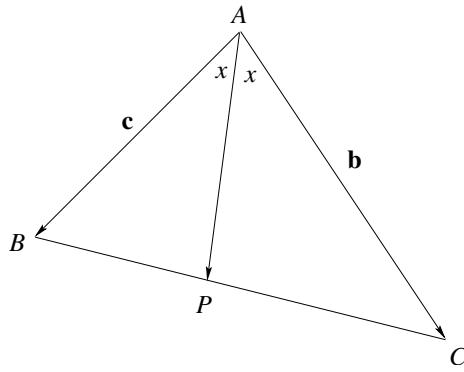
$$2 \cdot \overrightarrow{OP} = \frac{1}{2} (\overrightarrow{OA} + \overrightarrow{OC}) + \frac{1}{2} (\overrightarrow{OB} + \overrightarrow{OD}),$$

that is,

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4 \cdot \overrightarrow{OP}.$$

Question 4. Using vectors, show that the internal angle bisector of angle A of $\triangle ABC$ divides the side BC in the ratio $\frac{AB}{BC}$.

SOLUTIONS: Taking A as the origin, let $\mathbf{c} = \overrightarrow{AB}$ and $\mathbf{b} = \overrightarrow{AC}$, with $c = AB$ and $b = AC$, as in the figure,



then the internal angle bisector of angle A is on the line

$$\mathbf{r} = t (\hat{\mathbf{b}} + \hat{\mathbf{c}}) = t \left(\frac{\mathbf{b}}{b} + \frac{\mathbf{c}}{c} \right) = t \left(\frac{c\mathbf{b} + b\mathbf{c}}{bc} \right), \quad -\infty < t < \infty$$

and this line intersects the side \overrightarrow{BC} when $t = \frac{bc}{b+c}$.

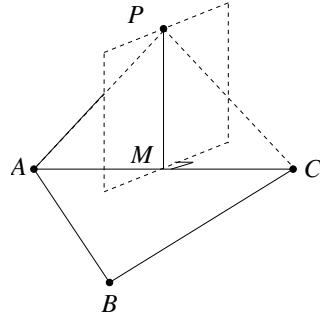
If P is the point of intersection of the internal angle bisector at A and the side \overrightarrow{BC} , then

$$\overrightarrow{AP} = \frac{c}{b+c} \mathbf{b} + \frac{b}{b+c} \mathbf{c},$$

so that P divides the side BC in the ratio $\frac{c}{b} = \frac{AB}{AC}$.

Question 5. If a point P is equidistant from the vertices of a right triangle and M is the midpoint of the hypotenuse, show using vectors that \overrightarrow{PM} is perpendicular to the plane of the triangle.

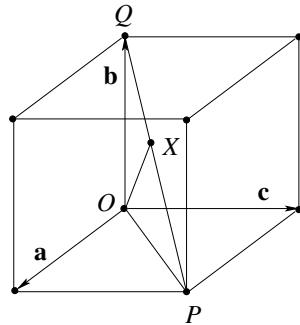
SOLUTION: Let $\triangle ABC$ be a right triangle with the right angle at B , so that M is the midpoint of the side AC . Note that since P is equidistant from the vertices A and C then \overrightarrow{PM} lies on the plane which is the perpendicular bisector of the side AC , and so \overrightarrow{PM} is perpendicular to \overrightarrow{AC} .



Also, since P is equidistant from A and B , then P lies in the plane that is the perpendicular bisector of side AB , similarly P lies in the plane that is the perpendicular bisector of side BC . These three planes intersect in a line perpendicular to the plane of the triangle which passes through the circumcenter of $\triangle ABC$, and also through the point P . Since $\triangle ABC$ is a right triangle and M is the midpoint of the hypotenuse, its circumcenter is M , so that these three planes intersect in the line joining P and M . Therefore \overrightarrow{PM} is perpendicular to the plane of the triangle.

Question 6. Using vectors, find the perpendicular distance of a corner of a unit cube from a diagonal not passing through the corner.

SOLUTION: In the figure, we want to find the perpendicular distance from the corner O of the unit cube to the diagonal passing through the corners P and Q . We denote by \mathbf{a} , \mathbf{b} , and \mathbf{c} three mutually orthogonal unit vectors in the coordinate directions.



The vector from P to Q is given by

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \mathbf{b} - (\mathbf{a} + \mathbf{c}) = \mathbf{b} - \mathbf{a} - \mathbf{c},$$

and a point X is on the line joining P and Q if and only if

$$\overrightarrow{OX} = \overrightarrow{OP} + \overrightarrow{PX} = \mathbf{a} + \mathbf{c} + t(\mathbf{b} - \mathbf{a} - \mathbf{c})$$

for some scalar $0 \leq t \leq 1$, that is, if and only if

$$\overrightarrow{OX} = t\mathbf{b} + (1-t)\mathbf{a} + (1-t)\mathbf{c}$$

for some $0 \leq t \leq 1$.

Now we want to find the point X of the line segment PQ such that $\overrightarrow{OX} \perp \overrightarrow{PQ}$, and taking the inner product, we have

$$(t\mathbf{b} + (1-t)\mathbf{a} + (1-t)\mathbf{c}) \cdot (\mathbf{b} - \mathbf{a} - \mathbf{c}) = 0$$

if and only if $t - (1-t) - (1-t) = 0$, that is, if and only if $3t = 2$, or $t = \frac{2}{3}$.

Therefore,

$$\overrightarrow{OX} = \frac{2}{3}\mathbf{b} + \frac{1}{3}\mathbf{a} + \frac{1}{3}\mathbf{c},$$

and

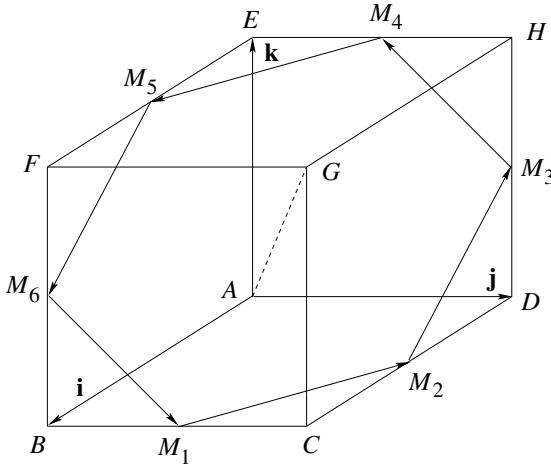
$$\|\overrightarrow{OX}\|^2 = \overrightarrow{OX} \cdot \overrightarrow{OX} = \frac{4}{9} + \frac{1}{9} + \frac{1}{9} = \frac{6}{9},$$

and the perpendicular distance from the corner O to the diagonal PQ is $\|\overrightarrow{OX}\| = \sqrt{\frac{2}{3}}$.

Note: A much simpler proof can be given by using similar right triangles in the plane containing the points O , P , and Q , but the problem said to use vectors.

Question 7. Using vectors, show that the midpoints of the six edges of a cube which do not meet a particular diagonal are coplanar.

SOLUTION: In the figure, let M_i be the midpoints of the sides of the cube which do not intersect the diagonal AG , and let \mathbf{i} , \mathbf{j} , and \mathbf{k} be the vectors of length 2 in the direction of the coordinates axes as shown.



Let $\mathbf{a} = \mathbf{i} - \mathbf{j}$ and $\mathbf{b} = \mathbf{k} - \mathbf{j}$, then

$$\begin{aligned}\overrightarrow{M_1 M_2} &= -\mathbf{i} + \mathbf{j} = -\mathbf{a} \\ \overrightarrow{M_2 M_3} &= -\mathbf{i} + \mathbf{k} = \mathbf{b} - \mathbf{a} \\ \overrightarrow{M_3 M_4} &= \mathbf{k} - \mathbf{j} = \mathbf{b} \\ \overrightarrow{M_4 M_5} &= -\mathbf{j} + \mathbf{i} = \mathbf{a} \\ \overrightarrow{M_5 M_6} &= -\mathbf{k} + \mathbf{i} = \mathbf{a} - \mathbf{b} \\ \overrightarrow{M_6 M_1} &= -\mathbf{k} + \mathbf{j} = -\mathbf{b},\end{aligned}$$

so that all of the midpoints lie in the plane with system of coordinates $(M_1, \mathbf{a}, \mathbf{b})$.

Question 8. Let $\alpha : \mathcal{P} \rightarrow \mathcal{P}$ be an isometry of the plane \mathcal{P} . Show that if P and Q are fixed points of α , then every point X on the line ℓ_{PQ} is a fixed point of α .

SOLUTION: If $\alpha(P) = P$ and $\alpha(Q) = Q$, then $\alpha(P)$ and $\alpha(Q)$ are on the line $\alpha(\ell_{PQ})$, that is, P and Q are on the line $\alpha(\ell_{PQ})$, and since α maps lines onto lines, then $\alpha(\ell_{PQ}) = \ell_{PQ}$.

Therefore, if X is a point on the line ℓ_{PQ} , then $\alpha(X)$ is on the line ℓ_{PQ} , and since α is distance preserving, then

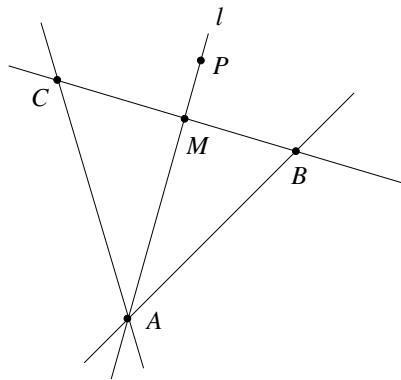
$$d(\alpha(X), P) = d(\alpha(X), \alpha(P)) = d(X, P) \quad \text{and} \quad d(\alpha(X), Q) = d(\alpha(X), \alpha(Q)) = d(X, Q).$$

Since $P, Q, X, \alpha(X)$ are all on the same line ℓ_{PQ} and the isometry α preserves betweenness, then $\alpha(X) = X$.

Question 9. Let $\alpha : \mathcal{P} \rightarrow \mathcal{P}$ be an isometry of the plane \mathcal{P} . Show that if α has three fixed points which are not collinear, then $\alpha = \iota$ (the identity).

SOLUTION: Suppose that A, B , and C are three noncollinear fixed points of the isometry α , then every point of the lines ℓ_{AB} , ℓ_{BC} , and ℓ_{AC} is a fixed point.

Let P be any point different from A , and let M be the intersection of ℓ_{BC} with $\ell = \ell_{AP}$, as in the figure.



Since B and C are fixed points, then every point of ℓ_{BC} is also a fixed point, therefore M is a fixed point of α , and therefore every point of ℓ is also a fixed point of α , thus P is a fixed point of α .

The same argument applies to points of the line through A parallel to ℓ_{BC} if we replace the line ℓ_{AP} by ℓ_{BP} . Therefore, $\alpha(P) = P$ for all $p \in \mathcal{P}$, that is, $\alpha = \iota$.

Question 10. Let α and β be isometries, and let A, B, C three noncollinear points for which

$$\alpha(A) = \beta(A), \quad \alpha(B) = \beta(B), \quad \text{and} \quad \alpha(C) = \beta(C).$$

Show that $\alpha = \beta$.

SOLUTION: If we let $\gamma = \alpha\beta^{-1}$, then γ is an isometry and

$$\gamma(A) = A, \quad \gamma(B) = B, \quad \text{and} \quad \gamma(C) = C,$$

and from the previous problem, since A, B , and C are noncollinear, then $\gamma = \alpha\beta^{-1} = \iota$, that is, $\alpha = \beta$.