

MATH 243 Winter 2008 Geometry II: Transformation Geometry Problem Set 5 Completion Date: Friday April 11, 2008

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. Thomsen's Relation Prove that for any lines a, b, c:

$$\sigma_c \sigma_a \sigma_b \sigma_c \sigma_a \sigma_b \sigma_a \sigma_b \sigma_c \sigma_a \sigma_b \sigma_c \sigma_b \sigma_a \sigma_c \sigma_b \sigma_a \sigma_b \sigma_a \sigma_c \sigma_b \sigma_a = \iota.$$

Question 2. If x' = ax + by + c and y' = bx - ay + d with $a^2 + b^2 = 1$ are the equations for an isometry α , show that α is a reflection if and only if

ac + bd + c = 0 and ad - bc - d = 0.

Question 3. If $x' = \frac{3}{5}x + \frac{4}{5}y$ and $y' = \frac{4}{5}x - \frac{3}{5}y$ are the equations for σ_m , then find the line m.

Question 4. If $2x' = -\sqrt{3}x - y + 2$ and $2y' = x - \sqrt{3}y - 1$ are the equations for $\rho_{P,\theta}$, then find P and θ .

Question 5. If x' = ax + by + c and y' = bx - ay + d are equations for σ_m , then find the line m.

Question 6. Show that the equations for a glide reflection whose axis m passes through the origin with angle of inclination θ and whose translation is along m through r units, r measured positive from the origin into the first two quadrants or along the positive x-axis, and negative otherwise, are given by

$$x' = x\cos 2\theta + y\sin 2\theta + r\cos \theta$$
$$y' = x\sin 2\theta - y\cos 2\theta + r\sin \theta.$$

Question 7. If a and b are lines in the plane, show that the following are equivalent:

- (a) a = b or a and b are perpendicular,
- (b) $\sigma_a \sigma_b = \sigma_b \sigma_a$,
- (c) $\sigma_b(a) = a$,
- (d) $(\sigma_b \sigma_a)^2 = \iota$,
- (e) $\sigma_b \sigma_a$ is either the identity or a halfturn.

Question 8. If the isometry σ_P is a halfturn, show that given any two perpendicular lines m and n which intersect at the point P, we have $\sigma_P = \sigma_m \sigma_n$.