MATH 243 Winter 2008

Geometry II: Transformation Geometry
 Problem Set 5
 Completion Date: Friday April 11, 2008

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. Thomsen's Relation Prove that for any lines a, b, c :

$$
\sigma_{c} \sigma_{a} \sigma_{b} \sigma_{c} \sigma_{a} \sigma_{b} \sigma_{a} \sigma_{b} \sigma_{c} \sigma_{a} \sigma_{b} \sigma_{c} \sigma_{b} \sigma_{a} \sigma_{c} \sigma_{b} \sigma_{a} \sigma_{b} \sigma_{a} \sigma_{c} \sigma_{b} \sigma_{a}=\iota
$$

Question 2. If $x^{\prime}=a x+b y+c$ and $y^{\prime}=b x-a y+d$ with $a^{2}+b^{2}=1$ are the equations for an isometry α, show that α is a reflection if and only if

$$
a c+b d+c=0 \quad \text { and } \quad a d-b c-d=0
$$

Question 3. If $x^{\prime}=\frac{3}{5} x+\frac{4}{5} y$ and $y^{\prime}=\frac{4}{5} x-\frac{3}{5} y$ are the equations for σ_{m}, then find the line m.

Question 4. If $2 x^{\prime}=-\sqrt{3} x-y+2$ and $2 y^{\prime}=x-\sqrt{3} y-1$ are the equations for $\rho_{P, \theta}$, then find P and θ.

Question 5. If $x^{\prime}=a x+b y+c$ and $y^{\prime}=b x-a y+d$ are equations for σ_{m}, then find the line m.

Question 6. Show that the equations for a glide reflection whose axis m passes through the origin with angle of inclination θ and whose translation is along m through r units, r measured positive from the origin into the first two quadrants or along the positive x-axis, and negative otherwise, are given by

$$
\begin{aligned}
x^{\prime} & =x \cos 2 \theta+y \sin 2 \theta+r \cos \theta \\
y^{\prime} & =x \sin 2 \theta-y \cos 2 \theta+r \sin \theta .
\end{aligned}
$$

Question 7. If a and b are lines in the plane, show that the following are equivalent:
(a) $a=b$ or a and b are perpendicular,
(b) $\sigma_{a} \sigma_{b}=\sigma_{b} \sigma_{a}$,
(c) $\sigma_{b}(a)=a$,
(d) $\left(\sigma_{b} \sigma_{a}\right)^{2}=\iota$,
(e) $\sigma_{b} \sigma_{a}$ is either the identity or a halfturn.

Question 8. If the isometry σ_{P} is a halfturn, show that given any two perpendicular lines m and n which intersect at the point P, we have $\sigma_{P}=\sigma_{m} \sigma_{n}$.

