MATH 243 Winter 2008
Geometry II: Transformation Geometry
Problem Set 4
Completion Date: Monday March 17, 2008
Department of Mathematical and Statistical Sciences
University of Alberta

Question 1. If ℓ, m, and n are the perpendicular bisectors of the sides $[A B],[B C]$, and $[C A]$, respectively, of $\triangle A B C$, then

$$
\alpha=\sigma_{n} \sigma_{m} \sigma_{\ell}
$$

is a reflection in which line?

Question 2. If $\sigma_{n} \sigma_{m} \sigma_{\ell}$ is a reflection, show that the lines ℓ, m, n are concurrent or have a common perpendicular.

Question 3. Find equations for lines m and n such that

$$
\sigma_{m} \sigma_{n}(x, y)=(x+2, y-4)
$$

Question 4. Show that

$$
\sigma_{P} \sigma_{\ell} \sigma_{P} \sigma_{\ell} \sigma_{P} \sigma_{\ell} \sigma_{P}
$$

is a reflection in a line parallel to ℓ.

Question 5. Let C be a point on the line ℓ, show that

$$
\sigma_{\ell} \rho_{C, \theta} \sigma_{\ell}=\rho_{C,-\theta}
$$

Question 6. Given nonparallel lines $A B$ and $C D$, show that there is a rotation ρ such that

$$
\rho(A B)=C D
$$

Question 7. Show that if $\rho_{1}, \rho_{2}, \rho_{2} \rho_{1}$, and $\rho_{2}^{-1} \rho_{1}$ are rotations, then the center of $\rho_{1}, \rho_{2} \rho_{1}$, and $\rho_{2}^{-1} \rho_{1}$ are collinear.

Question 8. In a given acute triangle, inscribe a triangle $\triangle P Q R$ having minimum perimeter.

Question 9. Given a point A and two lines ℓ and m, construct a square $A B C D$ such that B lies on ℓ and D lies on m.

Question 10. Given four distinct points, find a square such that each of the lines containing a side of the square passes through one of the four given points.

Hint: Given A, B, C, D we want to find the lines a, b, c, and d. Take P such that $\rho_{P, 90}(B)=C$. Let $\rho_{P, 90}(D)=E$, then take a to be $A E$.

