

MATH 243 Winter 2008 Geometry II: Transformation Geometry Problem Set 4 Completion Date: Monday March 17, 2008

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. If ℓ , m, and n are the perpendicular bisectors of the sides [AB], [BC], and [CA], respectively, of $\triangle ABC$, then

$$\alpha = \sigma_n \sigma_m \sigma_\ell$$

is a reflection in which line?

Question 2. If $\sigma_n \sigma_m \sigma_\ell$ is a reflection, show that the lines ℓ , m, n are concurrent or have a common perpendicular.

Question 3. Find equations for lines m and n such that

$$\sigma_m \sigma_n(x, y) = (x+2, y-4).$$

Question 4. Show that

 $\sigma_P \sigma_\ell \sigma_P \sigma_\ell \sigma_P \sigma_\ell \sigma_P$

is a reflection in a line parallel to ℓ .

Question 5. Let C be a point on the line ℓ , show that

 $\sigma_{\ell}\rho_{C,\theta}\sigma_{\ell}=\rho_{C,-\theta}.$

Question 6. Given nonparallel lines AB and CD, show that there is a rotation ρ such that

$$\rho(AB) = CD.$$

Question 7. Show that if ρ_1 , ρ_2 , $\rho_2\rho_1$, and $\rho_2^{-1}\rho_1$ are rotations, then the center of ρ_1 , $\rho_2\rho_1$, and $\rho_2^{-1}\rho_1$ are collinear.

Question 8. In a given acute triangle, inscribe a triangle $\triangle PQR$ having minimum perimeter.

Question 9. Given a point A and two lines ℓ and m, construct a square ABCD such that B lies on ℓ and D lies on m.

Question 10. Given four distinct points, find a square such that each of the lines containing a side of the square passes through one of the four given points.

Hint: Given A, B, C, D we want to find the lines a, b, c, and d. Take P such that $\rho_{P,90}(B) = C$. Let $\rho_{P,90}(D) = E$, then take a to be AE.