

MATH 243 Winter 2008 Geometry II: Transformation Geometry Problem Set 3 Completion Date: Friday February 29, 2008

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. Given a point O and a vector \overrightarrow{u} .

(a) Find the point Q such that

$$\tau_{\overrightarrow{u}}\sigma_O\tau_{\overrightarrow{u}}^{-1} = \sigma_Q$$

(b) What is the product $\sigma_O \tau_{\overrightarrow{u}}$?

Question 2. In the triangle $\triangle ABC$, show that G is the centroid if and only if

 $\sigma_G \sigma_C \sigma_G \sigma_B \sigma_G \sigma_A = \iota.$

Question 3. Prove using halfturns, that if ABCD and EBFD are parallelograms, then EAFC is also a parallelogram.

Question 4. Find all triangles such that three given noncollinear points are the midpoints of the sides of the triangle.

Hint: Given P, Q, R then $\sigma_R \sigma_Q \sigma_P$ fixes a vertex of a unique triangle $\triangle P'Q'R'$.

Question 5. Given $\angle ABC$, construct a point P on AB and a point Q on BC such that PQ = AB and the line PQ intersects the line BC at an angle of 60° .

Hint: Take a point D such that $[BD] \equiv [AB]$ and BD intersects BC at an angle of 60°.

Question 6. What is the symmetry group of a rhombus that is not a square?

Question 7. Prove that if $\sigma_n \sigma_m$ fixes the point P and $m \neq n$, then the point P is on both lines m and n.

Question 8. Let *m* be a line with equation 2x + y = 1. Find the equations of σ_m .

Question 9. Suppose that the lines ℓ and m have equations x + y = 0 and x - y = 1, respectively. Find the equations for $\sigma_{\ell}\sigma_{m}$.

Question 10. Given triangles $\triangle ABC$ and $\triangle DEF$, where $\triangle ABC \equiv \triangle DEF$ where

A(0,0), B(5,0), C(0,10), D(4,2), E(1,-2), F(12,-4),

find the equations of the lines such that the product of reflections in these lines maps $\triangle ABC$ to $\triangle DEF$.