

MATH 243 Winter 2008 Geometry II: Transformation Geometry Problem Set 2 Completion Date: Monday February 11, 2008

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. Which of the mappings defined on the Cartesian plane \mathcal{P} by the equations below are transformations?

(a) $\alpha(x, y) = (x^3, y^3)$ (b) $\beta(x, y) = (x, y^2)$ (c) $\gamma(x, y) = (3y, x + 2)$ (d) $\delta(x, y) = (x + y + 3, 2x + 2y - 1)$

Question 2. Let $\alpha(x, y) = (x + 1, y + 2x)$ and $\beta = (x + y - 1, y)$ be two mappings defined on the Cartesian plane \mathcal{P} .

- (a) Show that α and β are transformations of \mathcal{P} .
- (b) Find $\alpha \beta$ and $\beta \alpha$.
- (c) Find α^{-1} and β^{-1} .

Question 3.

(a) Find the image of the line 2x + 3y = 1 under the affine transformation

$$\alpha(x, y) = (x + y + 1, x - y + 2).$$

(b) Find the fixed points of α .

Question 4.

- (a) Prove that any affine transformation is a collineation.
- (b) Show that $\alpha(x,y) = (2x^3 + 1, y^3)$ is a transformation of the plane but is not a collineation.

Question 5. Let α and β be two involutive transformations of the Cartesian plane \mathcal{P} .

- (a) Prove that $\alpha \beta$ is involutive if and only if $\alpha \beta = \beta \alpha$.
- (b) Assume that α , β , ι are distinct transformations such that

$$\alpha \beta = \beta \alpha = \gamma.$$

Let $\Gamma = {\iota, \alpha, \beta, \gamma}$. Prove that Γ is a commutative subgroup of \mathcal{G} , the group of all transformations on the plane \mathcal{P} (construct the multiplication table).

Question 6. Let $\alpha(x, y) = (ax + by, cx + dy)$ be an affine transformation of \mathcal{P} . Prove that α is an involution if and only if

$$a^{2} + bc = 1$$
$$ab + bd = 0$$
$$ac + cd = 0$$
$$bc + d^{2} = 1.$$

Note: The matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is called the matrix of the transformation α . The conditions above say that α is an involution if and only if $A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Question 7. Let α be an isometry of \mathcal{P} which admits an invariant line ℓ (that is, $\alpha(\ell) = \ell$) and a fixed point $P \in \mathcal{P}$. Prove that there is a point $Q \in \ell$ such that $\alpha(Q) = Q$ and a line ℓ' through P such that $\alpha(\ell') = \ell'$.

Question 8. If a circle is invariant under the isometry α then its center is a fixed point of α .

Question 9. Let $\alpha \neq \iota$ be an involutive isometry, show that α has at least one fixed point.

Question 10. Let α be an isometry of \mathcal{P} and let ℓ be the perpendicular bisector of the segment [AB]. Prove that $\alpha(\ell)$ is the perpendicular bisector of the segment $[\alpha(A) \alpha(B)]$.