MATH 243 Winter 2008

Geometry II: Transformation Geometry
 Problem Set 1
 Completion Date: Monday January 21, 2008

Department of Mathematical and Statistical Sciences
 University of Alberta

Question 1. Let \mathbf{u} and \mathbf{v} be nonzero vectors, both parallel to a line ℓ.
(a) Show that $\mathbf{u}+\mathbf{v}$ is parallel to ℓ.
(b) Show that $k \mathbf{u}$ is parallel to ℓ for each $k \in \mathbb{R}, k \neq 0$.

Question 2. Let \mathbf{u} and \mathbf{v} be nonzero vectors, both parallel to a plane Π.
(a) Show that $\mathbf{u}+\mathbf{v}$ is parallel to Π.
(b) Show that $k \mathbf{u}$ is parallel to Π for each $k \in \mathbb{R}, k \neq 0$.

Question 3. Given an arbitrary point O, let $A^{\prime}, B^{\prime}, C^{\prime}$, be the midpoints of the sides $B C, A C$, and $A B$ of $\triangle A B C$, show that

$$
\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O A^{\prime}}+\overrightarrow{O B^{\prime}}+\overrightarrow{O C^{\prime}}
$$

Question 4. Given $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$, let G and G^{\prime} be their centroids, respectively. Show that

$$
\overrightarrow{G G^{\prime}}=\frac{1}{3}\left(\overrightarrow{A A^{\prime}}+\overrightarrow{B B^{\prime}}+\overrightarrow{C C^{\prime}}\right)
$$

Question 5. Show using vectors that the segment joining the midpoints of the nonparallel sides of a trapezoid is parallel to either base and congruent to half the sum of the bases.

Question 6. If the point P lies in the plane of $\triangle A B C$, but is distinct from the vertices of the triangle, and the parallelograms $P B A^{\prime} C, P C B^{\prime} A, P A C^{\prime} B$ are completed, show that the segments $\left[A A^{\prime}\right],\left[B B^{\prime}\right]$, and [$C C^{\prime}$] bisect each other.

Question 7. Suppose that the points $A^{\prime}, B^{\prime}, C^{\prime}$ lie on the sides $[B C],[C A]$, and $[A B]$ of $\triangle A B C$, respectively, and

$$
\frac{A^{\prime} B}{A^{\prime} C}=\frac{B^{\prime} C}{B^{\prime} A}=\frac{C^{\prime} A}{C^{\prime} B}
$$

(a) Show that the centroids of $\triangle A^{\prime} B^{\prime} C^{\prime}$ and $\triangle A B C$ coincide.
(b) If the parallelograms $A C^{\prime} C^{\prime \prime} C$ and $A B^{\prime} B^{\prime \prime} B$ are completed, show that $B^{\prime} C^{\prime \prime}$ and $C^{\prime} B^{\prime \prime}$ are parallel to the median of $\triangle A B C$ through A.

Question 8. If $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ are the midpoints of consecutive sides of a hexagon, show that $\triangle A_{1} A_{3} A_{5}$ and $\triangle A_{2} A_{4} A_{6}$ have the same centroid.

Question 9. If P, Q, R, S are the midpoints of the edges $A B, B C, C D, D A$, respectively, of a tetrahedron $A B C D$, show that $P R$ and $Q S$ bisect each other at the centroid of the tetrahedron.

Question 10. Let $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be two parallelograms, not necessarily coplanar, show that the midpoints I, J, K, L, of $\left[A A^{\prime}\right],\left[B B^{\prime}\right],\left[C C^{\prime}\right],\left[D D^{\prime}\right]$, respectively, are the vertices of a parallelogram.

Question 11. Show that the angle bisectors of $\triangle A B C$ can be used to construct a new triangle if and only if $\triangle A B C$ is equilateral.

Question 12. Let $X_{1}, X_{2}, \ldots, X_{n}$ be $n \geq 2$ points on a circle \mathcal{C}, and let G be their centroid. Denote by $Y_{1}, Y_{2}, \ldots, Y_{n}$ the second points of intersection of the lines $X_{1} G, X_{2} G, \ldots, X_{n} G$ with the circle, respectively.
(a) Show that

$$
\frac{X_{1} G}{G Y_{1}}+\frac{X_{2} G}{G Y_{2}}+\cdots+\frac{X_{n} G}{G Y_{n}}=n
$$

(b) Show that the set of points P inside the circle \mathcal{C} that satisfy

$$
\frac{X_{1} P}{P Y_{1}}+\frac{X_{2} P}{P Y_{2}}+\cdots+\frac{X_{n} P}{P Y_{n}}=n
$$

is the circle with diameter $O G$, where O is the center of the circle \mathcal{C}.

