

MATH 243 Winter 2008 Geometry II: Transformation Geometry Problem Set 1 Completion Date: Monday January 21, 2008

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. Let u and v be nonzero vectors, both parallel to a line ℓ .

- (a) Show that $\mathbf{u} + \mathbf{v}$ is parallel to ℓ .
- (b) Show that $k\mathbf{u}$ is parallel to ℓ for each $k \in \mathbb{R}, k \neq 0$.

Question 2. Let \mathbf{u} and \mathbf{v} be nonzero vectors, both parallel to a plane Π .

- (a) Show that $\mathbf{u} + \mathbf{v}$ is parallel to Π .
- (b) Show that $k\mathbf{u}$ is parallel to Π for each $k \in \mathbb{R}, k \neq 0$.

Question 3. Given an arbitrary point O, let A', B', C', be the midpoints of the sides BC, AC, and AB of $\triangle ABC$, show that

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OA'} + \overrightarrow{OB'} + \overrightarrow{OC'}.$$

Question 4. Given $\triangle A B C$ and $\triangle A' B' C'$, let G and G' be their centroids, respectively. Show that

$$\overrightarrow{GG'} = \frac{1}{3} \left(\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} \right).$$

Question 5. Show using vectors that the segment joining the midpoints of the nonparallel sides of a trapezoid is parallel to either base and congruent to half the sum of the bases.

Question 6. If the point P lies in the plane of $\triangle ABC$, but is distinct from the vertices of the triangle, and the parallelograms PBA'C, PCB'A, PAC'B are completed, show that the segments [AA'], [BB'], and [CC'] bisect each other.

Question 7. Suppose that the points A', B', C' lie on the sides [BC], [CA], and [AB] of $\triangle ABC$, respectively, and

$$\frac{A'B}{A'C} = \frac{B'C}{B'A} = \frac{C'A}{C'B}.$$

- (a) Show that the centroids of $\triangle A'B'C'$ and $\triangle ABC$ coincide.
- (b) If the parallelograms AC'C''C and AB'B''B are completed, show that B'C'' and C'B'' are parallel to the median of $\triangle ABC$ through A.

Question 8. If A_1 , A_2 , A_3 , A_4 , A_5 , A_6 are the midpoints of consecutive sides of a hexagon, show that $\triangle A_1 A_3 A_5$ and $\triangle A_2 A_4 A_6$ have the same centroid.

Question 9. If P, Q, R, S are the midpoints of the edges AB, BC, CD, DA, respectively, of a tetrahedron ABCD, show that PR and QS bisect each other at the centroid of the tetrahedron.

Question 10. Let ABCD and A'B'C'D' be two parallelograms, not necessarily coplanar, show that the midpoints I, J, K, L, of [AA'], [BB'], [CC'], [DD'], respectively, are the vertices of a parallelogram.

Question 11. Show that the angle bisectors of $\triangle ABC$ can be used to construct a new triangle if and only if $\triangle ABC$ is equilateral.

Question 12. Let X_1, X_2, \ldots, X_n be $n \ge 2$ points on a circle C, and let G be their centroid. Denote by Y_1, Y_2, \ldots, Y_n the second points of intersection of the lines X_1G, X_2G, \ldots, X_nG with the circle, respectively.

(a) Show that

$$\frac{X_1G}{GY_1} + \frac{X_2G}{GY_2} + \dots + \frac{X_nG}{GY_n} = n.$$

(b) Show that the set of points P inside the circle C that satisfy

$$\frac{X_1P}{PY_1} + \frac{X_2P}{PY_2} + \dots + \frac{X_nP}{PY_n} = n$$

is the circle with diameter OG, where O is the center of the circle C.