
Sample Midterm Examination Solutions

Question 1. Find all solutions x ∈ Z126 of the equation 11 · x = 12.

Solution: We use the Euclidean algorithm to find the greatest common divisor d = (11, 126) :

126 = 11 · 11 + 5

11 = 2 · 5 + 1

5 = 5 · 1 + 0

and the last nonzero remainder is d = (11, 126) = 1. Therefore the equation 11 · x = 12 has exactly d = 1
solution in Z126.

In order to find the solution, we work backward, writing d = 1 as a linear combination of 11 and 126,

1 = 11− 2 · 5

= 11− 2 · (126− 11 · 11)

= 23 · 11− 2 · 126,

so that 1 = 23 · 11 + (−2) · 126. Multiplying this equation by 12, we have

11 · (12 · 23) = 12 + 2 · 12 · 126,

and the unique solution is x = [ 12 · 23 ] = [ 24 ] in Z126.

Question 2.

(a) Show that if n ∈ N, then 10n ≡ (−1)n (mod 11).

Hint : Use induction!

(b) Let m = akak−1 · · · a1a0 be the decimal expansion of the nonnegative integer m. Show that 11 | m if

and only if 11 |
k
∑

i=0

(−1)iai.

Solution:

(a) We use induction to show that

10n ≡ (−1)n (mod 11) (∗)

for all nonnegative integers n.



Base Case : For n = 0, we have 100 = 1 = (−1)0, and (∗) is true for n = 1.

Inductive Step : Assume that (∗) is true for some n ≥ 0, then

10n+1 ≡ 10 · 10n ≡ (−1) · (−1)n ≡ (−1)n+1 (mod 11),

so that (∗) is true for n + 1 also.

By the Principle of Mathematical Induction, (∗) is true for all n ≥ 0.

(b) If m ≥ 0, then m has a unique decimal expansion given by

m = a0 · 100 + a1 · 101 + a2 · 102 + · · · + ak · 10k

where 0 ≤ ai ≤ 9 for i = 0, 1, . . . , k. Therefore, from part (a),

m ≡ a0 · (−1)0 + a1 · (−1)1 + a2 · (−1)2 + · · · + ak · (−1)k (mod 11),

so that m ≡ 0 (mod 11) if and only if
k
∑

i=0

(−1)iai ≡ 0 (mod 11), that is, 11 | m if and only if

11 |
k
∑

i=0

(−1)iai.

Question 3.

(a) Let `, m, and n be integers, with ` > 0. Show that (`m, `n) = `(m, n).

(b) Let m and n be nonzero integers. Assuming that d = (m, n), show that
m

d
and

n

d
are relatively prime.

Solution: .

(a) Let d = (m, n), from the Euclidean algorithm there exist integers u and v such that

d = mu + nv,

so that the positive integer
`d = `mu + `nv

is a linear combination of `m and `n, and therefore

(`m, `n) ≤ `mu + `nv = `d.

On the other hand, `d is a common divisor of `m and `n, so that

`d ≤ (`m, `n).

Therefore (`m, `n) = `(m, n).

(b) Let d = (m, n), then from part (a) we have

d = (m, n) =
(

d
m

d
, d

n

d

)

= d
(m

d
,
n

d

)

,

and since d ≥ 1, from the cancellation law we have
(m

d
,
n

d

)

= 1.



Question 4. Given positive integers m and n, consider the set

S =

{(

a b

c d

) ∣

∣

∣

∣

a, b, c, d ∈ Z, m | b, and n | c

}

.

Show that ordinary matrix addition and multiplication make S a ring with identity. Is S commutative?

Hint : Show that S is a subring of M2(Z), the ring of all 2 × 2 matrices with entries in Z.

Solution: Since S is a subset of the ring M2(Z) and OM2(Z) =

(

0 0
0 0

)

∈ S, we only have to show it is

closed under addition and multiplication and that it contains additive inverses.

Note that if A =

(

a b

c d

)

and B =

(

e f

g h

)

are in S, then m | b, m | f and n | c, n | g.

Now,

A + B =

(

a + e b + f

c + g d + h

)

and m | b + f, and n | c + g, so that A + B ∈ S.

Also,

A · B =

(

ae + bg af + bh

ce + dg cf + dh

)

and m | af + bh, and n | +dg so that A · B ∈ S.

Finally,

−A =

(

−a −b

−c −d

)

and m | −b, and n | −c, so that −A ∈ S.

Therefore S is a subring of M2(Z), and since m | 0 and n | 0, then I =

(

1 0
0 1

)

∈ S, and S is a ring with

identity.

Note that S is noncommutative since
(

1 m

0 1

)

·

(

1 0
n 1

)

=

(

1 + mn m

n 1

)

,

while
(

1 0
n 1

)

·

(

1 m

0 1

)

=

(

1 m

n 1 + mn

)

,

and these are not the same since mn > 0.



Question 5. Let m and n be positive integers. Assuming that (m, n) = 1 and the integer m · n is a perfect
square, that is, m · n = k2 for some positive integer k, show that both m and n are squares.

Hint : Prime Factorization!

Solution: Suppose that m and n are positive integers and m · n = k2 for some positive integer k > 1, and
suppose the prime factorization of k is given by

k = pα1

1 pα2

2 · · · pαr

r · qβ1

1 q
β2

2 · · · qβs

s

where p1 < p2 < · · · < pr are distinct primes that k has in common with m, and q1 < q2 < · · · < qs are
distinct primes that k has in common with n, and αi ≥ 1, βj ≥ 1 for 1 ≤ i ≤ r and 1 ≤ j ≤ s.

Since (m, n) = 1, then no pi is equal to a qj , and therefore

m · n = k2 = p2α1

1 p2α2

2 · · · p2αr

r · q2β1

1 q
2β2

2 · · · q2βs

s ,

implies that
m = p2α1

1 p2α2

2 · · · p2αr

r and n = q
2β1

1 q
2β2

2 · · · q2βs

s ,

so that m and n are both perfect squares.

Question 6. The three children in a family have feet that are 7 inches, 9 inches, and 11 inches in length.
When they measure the length of the living room of their house using their feet, they find that there are
2, 3, and 4 inches left over, respectively. How long is the living room?

Hint : Chinese Remainder Theorem!

Solution: Let x = the length of the living room (measured in inches), then we want to solve the system
of linear congruences

x ≡ 2 (mod 7)

x ≡ 3 (mod 9)

x ≡ 4 (mod 11)

We have a1 = 2, a2 = 3, and a3 = 4, while m1 = 7, m2 = 9, and m3 = 11. Letting M = 7 · 9 · 11, then

M1 = 9 · 11 = 99, M2 = 7 · 11 = 77, M3 = 7 · 9 = 63

and we solve the congruences:

M1y1 ≡ 1 (mod 7) implies y1 ≡ 1 (mod 7)

M2y2 ≡ 1 (mod 9) implies y2 ≡ 2 (mod 9)

M3y3 ≡ 1 (mod 11) implies y3 ≡ 7 (mod 11)

The solution is

x ≡ a1M1y1 + a2M2y2 + a3M3y3 ≡ 2 · 99 · 1 + 3 · 77 · 2 + 4 · 63 · 7 ≡ 2424 (mod 693),

that is, x = 345 inches, or x = 28.75 feet.


