
math 228

Sample Midterm Examination Solutions

Question 1. Find all solutions $x \in \mathbb{Z}_{126}$ of the equation $11 \cdot x = 12$.

SOLUTION: We use the Euclidean algorithm to find the greatest common divisor $d = (11, 126)$:

$$\begin{aligned} 126 &= 11 \cdot 11 + 5 \\ 11 &= 2 \cdot 5 + 1 \\ 5 &= 5 \cdot 1 + 0 \end{aligned}$$

and the last nonzero remainder is $d = (11, 126) = 1$. Therefore the equation $11 \cdot x = 12$ has exactly $d = 1$ solution in \mathbb{Z}_{126} .

In order to find the solution, we work backward, writing $d = 1$ as a linear combination of 11 and 126,

$$\begin{aligned} 1 &= 11 - 2 \cdot 5 \\ &= 11 - 2 \cdot (126 - 11 \cdot 11) \\ &= 23 \cdot 11 - 2 \cdot 126, \end{aligned}$$

so that $1 = 23 \cdot 11 + (-2) \cdot 126$. Multiplying this equation by 12, we have

$$11 \cdot (12 \cdot 23) = 12 + 2 \cdot 12 \cdot 126,$$

and the unique solution is $x = [12 \cdot 23] = [24]$ in \mathbb{Z}_{126} .

Question 2.

(a) Show that if $n \in \mathbb{N}$, then $10^n \equiv (-1)^n \pmod{11}$.

Hint: Use induction!

(b) Let $m = a_k a_{k-1} \cdots a_1 a_0$ be the decimal expansion of the nonnegative integer m . Show that $11 \mid m$ if and only if $11 \mid \sum_{i=0}^k (-1)^i a_i$.

SOLUTION:

(a) We use induction to show that

$$10^n \equiv (-1)^n \pmod{11} \tag{*}$$

for all nonnegative integers n .

Base Case: For $n = 0$, we have $10^0 = 1 = (-1)^0$, and $(*)$ is true for $n = 1$.

Inductive Step: Assume that $(*)$ is true for some $n \geq 0$, then

$$10^{n+1} \equiv 10 \cdot 10^n \equiv (-1) \cdot (-1)^n \equiv (-1)^{n+1} \pmod{11},$$

so that $(*)$ is true for $n + 1$ also.

By the Principle of Mathematical Induction, $(*)$ is true for all $n \geq 0$.

(b) If $m \geq 0$, then m has a unique decimal expansion given by

$$m = a_0 \cdot 10^0 + a_1 \cdot 10^1 + a_2 \cdot 10^2 + \cdots + a_k \cdot 10^k$$

where $0 \leq a_i \leq 9$ for $i = 0, 1, \dots, k$. Therefore, from part (a),

$$m \equiv a_0 \cdot (-1)^0 + a_1 \cdot (-1)^1 + a_2 \cdot (-1)^2 + \cdots + a_k \cdot (-1)^k \pmod{11},$$

so that $m \equiv 0 \pmod{11}$ if and only if $\sum_{i=0}^k (-1)^i a_i \equiv 0 \pmod{11}$, that is, $11 \mid m$ if and only if

$$11 \mid \sum_{i=0}^k (-1)^i a_i.$$

Question 3.

(a) Let ℓ, m , and n be integers, with $\ell > 0$. Show that $(\ell m, \ell n) = \ell(m, n)$.

(b) Let m and n be nonzero integers. Assuming that $d = (m, n)$, show that $\frac{m}{d}$ and $\frac{n}{d}$ are relatively prime.

SOLUTION: .

(a) Let $d = (m, n)$, from the Euclidean algorithm there exist integers u and v such that

$$d = mu + nv,$$

so that the positive integer

$$\ell d = \ell mu + \ell nv$$

is a linear combination of ℓm and ℓn , and therefore

$$(\ell m, \ell n) \leq \ell mu + \ell nv = \ell d.$$

On the other hand, ℓd is a common divisor of ℓm and ℓn , so that

$$\ell d \leq (\ell m, \ell n).$$

Therefore $(\ell m, \ell n) = \ell(m, n)$.

(b) Let $d = (m, n)$, then from part (a) we have

$$d = (m, n) = \left(d \frac{m}{d}, d \frac{n}{d} \right) = d \left(\frac{m}{d}, \frac{n}{d} \right),$$

and since $d \geq 1$, from the cancellation law we have $\left(\frac{m}{d}, \frac{n}{d} \right) = 1$.

Question 4. Given positive integers m and n , consider the set

$$S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}, m \mid b, \text{ and } n \mid c \right\}.$$

Show that ordinary matrix addition and multiplication make S a ring with identity. Is S commutative?

Hint: Show that S is a subring of $M_2(\mathbb{Z})$, the ring of all 2×2 matrices with entries in \mathbb{Z} .

SOLUTION: Since S is a subset of the ring $M_2(\mathbb{Z})$ and $O_{M_2(\mathbb{Z})} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in S$, we only have to show it is closed under addition and multiplication and that it contains additive inverses.

Note that if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$ are in S , then $m \mid b$, $m \mid f$ and $n \mid c$, $n \mid g$.

Now,

$$A + B = \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}$$

and $m \mid b+f$, and $n \mid c+g$, so that $A + B \in S$.

Also,

$$A \cdot B = \begin{pmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{pmatrix}$$

and $m \mid af+bh$, and $n \mid dg$ so that $A \cdot B \in S$.

Finally,

$$-A = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$$

and $m \mid -b$, and $n \mid -c$, so that $-A \in S$.

Therefore S is a subring of $M_2(\mathbb{Z})$, and since $m \mid 0$ and $n \mid 0$, then $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in S$, and S is a ring with identity.

Note that S is noncommutative since

$$\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} = \begin{pmatrix} 1+mn & m \\ n & 1 \end{pmatrix},$$

while

$$\begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & m \\ n & 1+mn \end{pmatrix},$$

and these are not the same since $mn > 0$.

Question 5. Let m and n be positive integers. Assuming that $(m, n) = 1$ and the integer $m \cdot n$ is a perfect square, that is, $m \cdot n = k^2$ for some positive integer k , show that both m and n are squares.

Hint: Prime Factorization!

SOLUTION: Suppose that m and n are positive integers and $m \cdot n = k^2$ for some positive integer $k > 1$, and suppose the prime factorization of k is given by

$$k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} \cdot q_1^{\beta_1} q_2^{\beta_2} \cdots q_s^{\beta_s}$$

where $p_1 < p_2 < \cdots < p_r$ are distinct primes that k has in common with m , and $q_1 < q_2 < \cdots < q_s$ are distinct primes that k has in common with n , and $\alpha_i \geq 1$, $\beta_j \geq 1$ for $1 \leq i \leq r$ and $1 \leq j \leq s$.

Since $(m, n) = 1$, then no p_i is equal to a q_j , and therefore

$$m \cdot n = k^2 = p_1^{2\alpha_1} p_2^{2\alpha_2} \cdots p_r^{2\alpha_r} \cdot q_1^{2\beta_1} q_2^{2\beta_2} \cdots q_s^{2\beta_s},$$

implies that

$$m = p_1^{2\alpha_1} p_2^{2\alpha_2} \cdots p_r^{2\alpha_r} \quad \text{and} \quad n = q_1^{2\beta_1} q_2^{2\beta_2} \cdots q_s^{2\beta_s},$$

so that m and n are both perfect squares.

Question 6. The three children in a family have feet that are 7 inches, 9 inches, and 11 inches in length. When they measure the length of the living room of their house using their feet, they find that there are 2, 3, and 4 inches left over, respectively. How long is the living room?

Hint: Chinese Remainder Theorem!

SOLUTION: Let $x =$ the length of the living room (measured in inches), then we want to solve the system of linear congruences

$$\begin{aligned} x &\equiv 2 \pmod{7} \\ x &\equiv 3 \pmod{9} \\ x &\equiv 4 \pmod{11} \end{aligned}$$

We have $a_1 = 2$, $a_2 = 3$, and $a_3 = 4$, while $m_1 = 7$, $m_2 = 9$, and $m_3 = 11$. Letting $M = 7 \cdot 9 \cdot 11$, then

$$M_1 = 9 \cdot 11 = 99, \quad M_2 = 7 \cdot 11 = 77, \quad M_3 = 7 \cdot 9 = 63$$

and we solve the congruences:

$$\begin{aligned} M_1 y_1 &\equiv 1 \pmod{7} & \text{implies} & \quad y_1 \equiv 1 \pmod{7} \\ M_2 y_2 &\equiv 1 \pmod{9} & \text{implies} & \quad y_2 \equiv 2 \pmod{9} \\ M_3 y_3 &\equiv 1 \pmod{11} & \text{implies} & \quad y_3 \equiv 7 \pmod{11} \end{aligned}$$

The solution is

$$x \equiv a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3 \equiv 2 \cdot 99 \cdot 1 + 3 \cdot 77 \cdot 2 + 4 \cdot 63 \cdot 7 \equiv 2424 \pmod{693},$$

that is, $x = 345$ inches, or $x = 28.75$ feet.