SOLUTIONS TO FINAL EXAMINATION

Instructor: I. E. Leonard

Time: 2 Hours

1. Let A be a commutative ring with identity $1 \in A$.
(a) Define what is means for an element $a \in A$ to be a unit.

Define what it means for an element $a \in A$ to be a zero divisor.
(b) Let \mathbb{Z}_{12}^{*} denote the set of all units in \mathbb{Z}_{12}. Construct a multiplication table for \mathbb{Z}_{12}^{*} and answer the questions below.
(i) How many units are there in \mathbb{Z}_{12} ?
(ii) How many zero divisors are there in Z_{12} ?
(iii) How many elements in \mathbb{Z}_{12}^{*} are their own inverse?

Solution:
(a) An element $a \in A$ is a unit if and only if a has a multiplicative inverse in A, that is, if and only if there exists an element $b \in A$ such that $a \cdot b=1$.

An element $a \in A$ is a zero divisor if and only if $a \neq 0$ and there exists an element $b \in A, b \neq 0$, such that $a \cdot b=0$.
(b) The multiplication table for \mathbb{Z}_{12}^{*} is given below.

.	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

(i) There are 4 units in \mathbb{Z}_{12} : namely, 1, 5, 7, 11 .
(ii) There are 7 zero divisors in \mathbb{Z}_{12} : namely, $2,3,4,6,8,9,10$, since

$$
2 \cdot 6=0, \quad 3 \cdot 4=0, \quad 3 \cdot 8=0, \quad 4 \cdot 9=0, \quad 6 \cdot 10=0
$$

(iii) From the table, we see immediately that every element of \mathbb{Z}_{12}^{*} is its own inverse, that is $a^{2}=a \cdot a=1$ for all $a \in \mathbb{Z}_{12}^{*}$.
2. Use Gaussian elimination to solve the system of linear equations

$$
\begin{aligned}
3 x+2 y+w & =2 \\
y+4 z+2 w & =1 \\
x+2 y+z+3 w & =4
\end{aligned}
$$

in \mathbb{Z}_{5}. How many solutions are there?
Solution: We can use elementary row operations to reduce the augmented matrix for this system to an upper triangular matrix as follows.

$$
\begin{array}{cc}
\left(\begin{array}{lllll}
3 & 2 & 0 & 1 & 2 \\
0 & 1 & 4 & 2 & 1 \\
1 & 2 & 1 & 3 & 4
\end{array}\right) & \xrightarrow{R_{1} \leftrightarrow R_{3}}\left(\begin{array}{lllll}
1 & 2 & 1 & 3 & 4 \\
0 & 1 & 4 & 2 & 1 \\
3 & 2 & 0 & 1 & 2
\end{array}\right) \\
R_{3} \xrightarrow{R_{3}-3 R_{1}}\left(\begin{array}{lllll}
1 & 2 & 1 & 3 & 4 \\
0 & 1 & 4 & 2 & 1 \\
0 & 1 & 2 & 2 & 0
\end{array}\right) \xrightarrow{R_{3} \rightarrow R_{3}-R_{2}}\left(\begin{array}{lllll}
1 & 2 & 1 & 3 & 4 \\
0 & 1 & 4 & 2 & 1 \\
0 & 0 & 3 & 0 & 4
\end{array}\right)
\end{array}
$$

We can read off the solution from the bottom up. The last row of the matrix is equivalent to the equation

$$
3 z=4
$$

and multiplying this by 2 , we have $z=3$.
The second row of the matrix is equivalent to the equation

$$
y+4 z+2 w=1
$$

so that $y=4+3 w$.
Finally, the first row of the matrix is equivalent to

$$
x+2 y+z+3 z=4
$$

so that $x=3+w$.
Therefore, the solution to the system is given by

$$
\begin{aligned}
& x=3+w \\
& y=4+3 w \\
& z=3
\end{aligned}
$$

where $w \in \mathbb{Z}_{5}$ is arbitrary.
There are exactly 5 solutions to the system of equations, corresponding to $w=0,1,2,3,4$.
3. (a) What does it mean for a positive integer p to be a prime?
(b) What does it mean for two positive integers a and b to be relatively prime?
(c) Is 409 a prime?
(d) How many integers $k \in \mathbb{Z}$ with $1 \leq k \leq 409$ are there that are relatively prime to 409 ?
(e) How many units are there in \mathbb{Z}_{409} ?
(f) Use the Euclidean algorithm to find the inverse of 135 in \mathbb{Z}_{409}.

Solution:

(a) A positive integer p is a prime if and only if $p>1$, and whenever $d \in \mathbb{N}$ and $d \mid p$, this implies that either $d=1$ or $d=p$.
(b) Two positive integers a and b are relatively prime if and only if their greatest common divisor is 1 , that is, whenever $d \in \mathbb{N}$ and $d \mid a$ and $d \mid b$ this implies that $d=1$.
(c) It is easy to check that 409 has no prime divisors less than 21, so that 409 is a prime.
(d) The number of integers k with $1 \leq k \leq 409$ that are relatively prime to 409 is 408 , namely, all the integers k with $1 \leq k \leq 408$.
(e) The number of units in \mathbb{Z}_{409} is the number of integers $1 \leq k \leq 409$ that are relatively prime to 409, namely 408.
(f) We use the Euclidean algorithm to find the greatest common divisor of 135 and 409, which we know is 1 , and then work from the bottom up to write 1 as a linear combination of 135 and 409.

$$
\begin{aligned}
409 & =3 \cdot 135+4 \\
135 & =33 \cdot 4+3 \\
4 & =1 \cdot 3+1 \\
3 & =3 \cdot 1+0
\end{aligned}
$$

and the last nonzero remainder is $(135,409)=1$. Working from the bottom up, we have

$$
\begin{aligned}
1 & =4-3=4-(135-33 \cdot 4)=34 \cdot 4-135 \\
& =34 \cdot(409-3 \cdot 135)-135=34 \cdot 409-103 \cdot 135
\end{aligned}
$$

and therefore $135^{-1}=-103=306$ in \mathbb{Z}_{409}.
4. (a) Given a polynomial $f(x)$ over a field \mathbb{F}, what does it mean to say that $f(x)$ is irreducible over \mathbb{F} ?
(b) Factor the polynomial $p(x)=x^{5}+x^{2}+x+1$ into a product of irreducible factors in $\mathbb{Z}_{2}[x]$.

Solution:
(a) A nonzero polynomial $f(x)$ is irreducible over \mathbb{F} if and only if its only divisors are the nonzero constant polynomials and it associates, equivalently, if and only if
(i) $\operatorname{deg} f(x) \geq 1$, and
(ii) if $f(x)=p(x) \cdot q(x)$ in $\mathbb{F}[x]$, then either $\operatorname{deg} p(x)=0$ or $\operatorname{deg} q(x)=0$.
(b) If $p(x)=x^{5}+x^{2}+x+1$, then $p(0)=1$, and $p(1)=0$, so that $p(x)$ has only the $\operatorname{root} a=1$ in \mathbb{Z}_{2}. From the Factor Theorem, $x-1=x+1$ is a factor of $p(x)$, and from the Division Algorithm or long division, we have

$$
p(x)=(x+1)^{2}\left(x^{3}+x+1\right)
$$

and finally, since $x^{3}+x+1$ has no roots in \mathbb{Z}_{2} and is of degree 3 , then it is irreducible over \mathbb{Z}_{2}.
5. Let $p(x)=x^{2}+x+8$ in $\mathbb{Z}_{10}[x]$.
(a) Find all the roots of $p(x)$ in \mathbb{Z}_{10}.
(b) Give two different factorizations of $p(x)$ in $\mathbb{Z}_{10}[x]$.

Solution:
(a) For $p(x)=x^{2}+x+8$ in $\mathbb{Z}_{10}[x]$, we have

$$
\begin{array}{llll}
p(0)=8, & p(1)=0, & p(2)=4, & p(3)=0, \\
p(4)=8, & p(5)=8, & p(6)=0, & p(7)=4, \\
p(8)=0, & p(9)=8, & p(10)=8, &
\end{array}
$$

Therefore, $p(x)$ has 4 roots in \mathbb{Z}_{10}, namely, $1,3,6,8$.
(b) From the Division Algorithm or long division, we have the following factorizations of $p(x)$,

$$
p(x)=(x-1) \cdot(x-8) \quad \text { and } \quad p(x)=(x-3) \cdot(x-6)
$$

in $\mathbb{Z}_{10}[x]$.
6. Let $f(x)=x^{4}+4$ in $\mathbb{C}[x]$.
(a) Show that $f(x)$ has no roots in \mathbb{Q}.
(b) Show that $f(x)$ is not irreducible over \mathbb{Z}.
(c) Factor $f(x)$ into a product of irreducible factors over \mathbb{C}.

Solution:

(a) If $r=\frac{c}{d} \in \mathbb{Q}$ is a root of $f(x)$, then from the Rational Roots Theorem, we have $d \mid 1$ and $c \mid 4$, and the only possibilities are $d= \pm 1$ and $c= \pm 1, \pm 2, \pm 4$. Therefore, the only possible roots in \mathbb{Q} are $\pm 1, \pm 2, \pm 4$, none of which is a root, so $f(x)$ has no roots in \mathbb{Q}.
(b) If $f(x)$ factors over \mathbb{Z}, then it also factors over \mathbb{Q}, and since it has no linear factors, it must factor into the product of two quadratics. By symmetry, we may assume that

$$
f(x)=\left(x^{2}+a x+2\right) \cdot\left(x^{2}-a x+2\right)
$$

for some $a \in \mathbb{Z}$. After simplifying this product, we have

$$
f(x)=x^{4}+\left(4-a^{2}\right) x^{2}+4
$$

so that $a^{2}=4$ and $a= \pm 2$. Thus, $f(x)=x^{4}+4$ factors over \mathbb{Z} as

$$
x^{4}+4=\left(x^{2}+2 x+2\right) \cdot\left(x^{2}-2 x+2\right)
$$

so that $f(x)$ is not irreducible over \mathbb{Z}.
(c) Note that

$$
x^{2}+2 x+2=x^{2}+2 x+1+1=(x+1)^{2}+1=(x+1)^{2}-i^{2}=(x+1+i) \cdot(x+1-i)
$$

and that

$$
x^{2}-2 x+2=x^{2}-2 x+1+1=(x-1)^{2}+1=(x-1)^{2}-i^{2}=(x-1+i) \cdot(x-1-i)
$$

so that we can write

$$
f(x)=(x+1+i) \cdot(x+1-i) \cdot(x-1+i) \cdot(x-1-i)
$$

as a product of irreducibles over \mathbb{C}.
7. (a) Given a prime p and a polynomial

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]
$$

we define the reduction of $f(x)$ modulo p to be the polynomial

$$
\bar{f}(x)=\bar{a}_{0}+\bar{a}_{1} x+\cdots+\bar{a}_{n} x^{n} \in \mathbb{Z}_{p}[x]
$$

Show that the mapping $T: \mathbb{Z}[x] \longrightarrow \mathbb{Z}_{p}[x]$ given by $T(f(x))=\bar{f}(x)$ for $f(x) \in \mathbb{Z}[x]$, is a ring homomorphism onto $\mathbb{Z}_{p}[x]$.
(b) Prove Gauss's Lemma: If $f(x)=g(x) \cdot h(x)$ in $\mathbb{Z}[x]$ and if a prime p divides every coefficient of $f(x)$, then either p divides every coefficient of $g(x)$ or p divides every coefficient of $h(x)$.

Solution:
(a) Suppose that $f(x)=\sum_{i} a_{i} x^{i}$ and $g(x)=\sum_{i} b_{i} x^{i}$ in $\mathbb{Z}[x]$, then $f(x)+g(x)=\sum_{i}\left(a_{i}+b_{i}\right) x^{i}$ in $\mathbb{Z}[x]$. Therefore,

$$
T(f(x)+g(x))=\sum_{i}\left(\overline{a_{i}+b_{i}}\right) x^{i}=\sum_{i}\left(\bar{a}_{i}+\bar{b}_{i}\right) x^{i}=\sum_{i} \bar{a}_{i} x^{i}+\sum_{i} \bar{b} x^{i}=T(f(x))+T(g(x))
$$

in $\mathbb{Z}_{p}[x]$.
Also, $f(x) \cdot g(x)=\sum_{k} c_{k} x^{k}$ in $\mathbb{Z}[x]$, where $c_{k}=\sum_{i} a_{i} \cdot b_{k-i}$. Therefore,

$$
T(f(x) \cdot g(x))=\sum_{k} \bar{c}_{k} x^{k}
$$

where

$$
\bar{c}_{k}=\overline{\sum_{i} a_{i} \cdot b_{k-i}}=\sum_{i} \overline{a_{i} \cdot b_{k-i}}=\sum_{i} \bar{a}_{i} \cdot \bar{b}_{k-i}
$$

so that $T(f(x) \cdot g(x))=T(f(x)) \cdot T(g(x))$ in $\mathbb{Z}_{p}[x]$.
Therefore,

$$
T(f(x)+g(x))=T(f(x))+T(g(x)) \quad \text { and } \quad T(f(x) \cdot g(x))=T(f(x)) \cdot T(g(x))
$$

for all $f(x), g(x) \in \mathbb{Z}[x]$, and $T: \mathbb{Z}[x] \longrightarrow \mathbb{Z}_{p}[x]$ is a ring homomorphism.
To see that T is onto, given any $g(x)=\sum_{i} \bar{a}_{i} x^{i} \in \mathbb{Z}_{p}[x]$, we have

$$
g(x)=T(f(x))
$$

where $f(x)=\sum_{i} a_{i} x^{i} \in \mathbb{Z}[x]$.
(b) If $f(x)=g(x) \cdot h(x)$ in $\mathbb{Z}[x]$ and p is a prime that divides every coefficient of $f(x)$, then

$$
\bar{f}(x)=\bar{g}(x) \cdot \bar{h}(x)=\overline{0}
$$

in $\mathbb{Z}_{p}[x]$, and since $\mathbb{Z}_{p}[x]$ is an integral domain, then either $\bar{g}(x)=\overline{0}$ or $\bar{h}(x)=\overline{0}$, that is, either all coefficients of $g(x)$ are divisible by p, or all coefficients of $h(x)$ are divisible by p.
8. (a) State the Chinese Remainder Theorem.
(b) When the marchers in the annual Mathematics Department Parade lined up 4 abreast, there was 1 odd person; when they tried 5 abreast, there were 2 left over; and when they tried 7 abreast, there were 3 left over. How large is the department?

Solution:

(a) The Chinese Remainder Theorem states that if the positive integers $m_{1}, m_{2}, \ldots, m_{k}$ are pairwise relatively prime, then the system of congruences

$$
\begin{aligned}
x & \equiv a_{1}\left(\bmod m_{1}\right) \\
x & \equiv a_{2}\left(\bmod m_{2}\right) \\
& \vdots \\
x & \equiv a_{k}\left(\bmod m_{k}\right)
\end{aligned}
$$

has a unique solution modulo $M=m_{1} \cdot m_{2} \cdots m_{k}$.
(b) We have to solve the system of congruences

$$
\begin{aligned}
& x \equiv 1(\bmod 4) \\
& x \equiv 2(\bmod 5) \\
& x \equiv 3(\bmod 7)
\end{aligned}
$$

where $m_{1}=4, m_{2}=5$, and $m_{3}=7$. As in class, we let

$$
M_{1}=m_{2} \cdot m_{3}=5 \cdot 7=35, \quad M_{2}=m_{1} \cdot m_{3}=4 \cdot 7=28, \quad M_{3}=m_{1} \cdot m_{2}=4 \cdot 5=20
$$

and let

$$
\begin{aligned}
& y_{1} \equiv M_{1}^{-1}\left(\bmod m_{1}\right) \equiv 3(\bmod 4) \\
& y_{2} \equiv M_{2}^{-1}\left(\bmod m_{2}\right) \equiv 2(\bmod 5) \\
& y_{3} \equiv M_{3}^{-1}\left(\bmod m_{3}\right) \equiv 6(\bmod 7)
\end{aligned}
$$

then the solution is

$$
x \equiv a_{1} \cdot y_{1} \cdot M_{1}+a_{2} \cdot y_{2} \cdot M_{2}+a_{3} \cdot y_{3} \cdot M_{3}\left(\bmod m_{1} \cdot m_{2} \cdot m_{3}\right)
$$

and we have

$$
x \equiv 1 \cdot 3 \cdot 35+2 \cdot 2 \cdot 28+3 \cdot 6 \cdot 20 \equiv 17(\bmod 140)
$$

However, in light of the fact that they have an annual parade, a more reasonable size for the Department of Mathematics might be $x=17+140=157$.

