
SOLUTIONS TO FINAL EXAMINATION

Instructor: I. E. Leonard Time: 2 Hours

1. Let A be a commutative ring with identity 1 ∈ A.

(a) Define what is means for an element a ∈ A to be a unit.

Define what it means for an element a ∈ A to be a zero divisor.

(b) Let Z*
12 denote the set of all units in Z12. Construct a multiplication table for Z*

12 and answer the
questions below.

(i) How many units are there in Z12 ?

(ii) How many zero divisors are there in Z12 ?

(iii) How many elements in Z*
12

are their own inverse?

Solution:

(a) An element a ∈ A is a unit if and only if a has a multiplicative inverse in A, that is, if and only
if there exists an element b ∈ A such that a · b = 1.

An element a ∈ A is a zero divisor if and only if a 6= 0 and there exists an element b ∈ A, b 6= 0,

such that a · b = 0.

(b) The multiplication table for Z*
12

is given below.

· 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

(i) There are 4 units in Z12 : namely, 1, 5, 7, 11.

(ii) There are 7 zero divisors in Z12 : namely, 2, 3, 4, 6, 8, 9, 10, since

2 · 6 = 0, 3 · 4 = 0, 3 · 8 = 0, 4 · 9 = 0, 6 · 10 = 0.

(iii) From the table, we see immediately that every element of Z*
12

is its own inverse, that is

a2 = a · a = 1 for all a ∈ Z*
12.



2. Use Gaussian elimination to solve the system of linear equations

3x + 2y + w = 2

y + 4z + 2w = 1

x + 2y + z + 3w = 4

in Z5. How many solutions are there?

Solution: We can use elementary row operations to reduce the augmented matrix for this system to
an upper triangular matrix as follows.





3 2 0 1 2
0 1 4 2 1
1 2 1 3 4





R1↔R3

−→





1 2 1 3 4
0 1 4 2 1
3 2 0 1 2





R3→R3−3R1

−→





1 2 1 3 4
0 1 4 2 1
0 1 2 2 0





R3→R3−R2

−→





1 2 1 3 4
0 1 4 2 1
0 0 3 0 4





We can read off the solution from the bottom up. The last row of the matrix is equivalent to the
equation

3z = 4,

and multiplying this by 2, we have z = 3.

The second row of the matrix is equivalent to the equation

y + 4z + 2w = 1,

so that y = 4 + 3w.

Finally, the first row of the matrix is equivalent to

x + 2y + z + 3z = 4,

so that x = 3 + w.

Therefore, the solution to the system is given by

x = 3 + w

y = 4 + 3w

z = 3,

where w ∈ Z5 is arbitrary.

There are exactly 5 solutions to the system of equations, corresponding to w = 0, 1, 2, 3, 4.



3. (a) What does it mean for a positive integer p to be a prime ?

(b) What does it mean for two positive integers a and b to be relatively prime ?

(c) Is 409 a prime?

(d) How many integers k ∈ Z with 1 ≤ k ≤ 409 are there that are relatively prime to 409?

(e) How many units are there in Z409 ?

(f) Use the Euclidean algorithm to find the inverse of 135 in Z409.

Solution:

(a) A positive integer p is a prime if and only if p > 1, and whenever d ∈ N and d
∣

∣ p, this implies
that either d = 1 or d = p.

(b) Two positive integers a and b are relatively prime if and only if their greatest common divisor
is 1, that is, whenever d ∈ N and d

∣

∣a and d
∣

∣ b this implies that d = 1.

(c) It is easy to check that 409 has no prime divisors less than 21, so that 409 is a prime.

(d) The number of integers k with 1 ≤ k ≤ 409 that are relatively prime to 409 is 408, namely, all
the integers k with 1 ≤ k ≤ 408.

(e) The number of units in Z409 is the number of integers 1 ≤ k ≤ 409 that are relatively prime to
409, namely 408.

(f) We use the Euclidean algorithm to find the greatest common divisor of 135 and 409, which we
know is 1, and then work from the bottom up to write 1 as a linear combination of 135 and 409.

409 = 3 · 135 + 4

135 = 33 · 4 + 3

4 = 1 · 3 + 1

3 = 3 · 1 + 0

and the last nonzero remainder is (135, 409) = 1. Working from the bottom up, we have

1 = 4 − 3 = 4 − (135 − 33 · 4) = 34 · 4 − 135

= 34 · (409− 3 · 135)− 135 = 34 · 409− 103 · 135

and therefore 135−1 = −103 = 306 in Z409.

4. (a) Given a polynomial f(x) over a field F, what does it mean to say that f(x) is irreducible over F ?

(b) Factor the polynomial p(x) = x5 + x2 + x + 1 into a product of irreducible factors in Z2[x].

Solution:

(a) A nonzero polynomial f(x) is irreducible over F if and only if its only divisors are the nonzero
constant polynomials and it associates, equivalently, if and only if

(i) deg f(x) ≥ 1, and

(ii) if f(x) = p(x) · q(x) in F[x], then either deg p(x) = 0 or deg q(x) = 0.

(b) If p(x) = x5 + x2 + x + 1, then p(0) = 1, and p(1) = 0, so that p(x) has only the root a = 1 in Z2.

From the Factor Theorem, x − 1 = x + 1 is a factor of p(x), and from the Division Algorithm or
long division, we have

p(x) = (x + 1)2(x3 + x + 1),

and finally, since x3 + x + 1 has no roots in Z2 and is of degree 3, then it is irreducible over Z2.



5. Let p(x) = x2 + x + 8 in Z10[x].

(a) Find all the roots of p(x) in Z10.

(b) Give two different factorizations of p(x) in Z10[x].

Solution:

(a) For p(x) = x2 + x + 8 in Z10[x], we have

p(0) = 8, p(1) = 0, p(2) = 4, p(3) = 0,

p(4) = 8, p(5) = 8, p(6) = 0, p(7) = 4,

p(8) = 0, p(9) = 8, p(10) = 8,

Therefore, p(x) has 4 roots in Z10, namely, 1, 3, 6, 8.

(b) From the Division Algorithm or long division, we have the following factorizations of p(x),

p(x) = (x − 1) · (x − 8) and p(x) = (x − 3) · (x − 6)

in Z10[x].

6. Let f(x) = x4 + 4 in C[x].

(a) Show that f(x) has no roots in Q.

(b) Show that f(x) is not irreducible over Z.

(c) Factor f(x) into a product of irreducible factors over C.

Solution:

(a) If r =
c

d
∈ Q is a root of f(x), then from the Rational Roots Theorem, we have d

∣

∣ 1 and c
∣

∣ 4,

and the only possibilities are d = ±1 and c = ±1, ±2, ±4. Therefore, the only possible roots in
Q are ±1, ±2, ±4, none of which is a root, so f(x) has no roots in Q.

(b) If f(x) factors over Z, then it also factors over Q, and since it has no linear factors, it must factor
into the product of two quadratics. By symmetry, we may assume that

f(x) =
(

x2 + ax + 2
)

·
(

x2 − ax + 2
)

for some a ∈ Z. After simplifying this product, we have

f(x) = x4 + (4 − a2)x2 + 4,

so that a2 = 4 and a = ±2. Thus, f(x) = x4 + 4 factors over Z as

x4 + 4 = (x2 + 2x + 2) · (x2 − 2x + 2)

so that f(x) is not irreducible over Z.

(c) Note that

x2 + 2x + 2 = x2 + 2x + 1 + 1 = (x + 1)2 + 1 = (x + 1)2 − i2 = (x + 1 + i) · (x + 1 − i)

and that

x2 − 2x + 2 = x2 − 2x + 1 + 1 = (x − 1)2 + 1 = (x − 1)2 − i2 = (x − 1 + i) · (x − 1 − i)

so that we can write

f(x) = (x + 1 + i) · (x + 1 − i) · (x − 1 + i) · (x − 1 − i)

as a product of irreducibles over C.



7. (a) Given a prime p and a polynomial

f(x) = a0 + a1x + · · · + anxn ∈ Z[x],

we define the reduction of f(x) modulo p to be the polynomial

f(x) = a0 + a1x + · · · + anxn ∈ Zp[x].

Show that the mapping T : Z[x] −→ Zp[x] given by T (f(x)) = f(x) for f(x) ∈ Z[x], is a ring
homomorphism onto Zp[x].

(b) Prove Gauss’s Lemma: If f(x) = g(x) · h(x) in Z[x] and if a prime p divides every coefficient of
f(x), then either p divides every coefficient of g(x) or p divides every coefficient of h(x).

Solution:

(a) Suppose that f(x) =
∑

i

aix
i and g(x) =

∑

i

bix
i in Z[x], then f(x) + g(x) =

∑

i

(ai + bi)x
i in Z[x].

Therefore,

T (f(x) + g(x)) =
∑

i

(

ai + bi

)

xi =
∑

i

(

ai + bi

)

xi =
∑

i

aix
i +

∑

i

bxi = T (f(x)) + T (g(x))

in Zp[x].

Also, f(x) · g(x) =
∑

k

ckxk in Z[x], where ck =
∑

i

ai · bk−i. Therefore,

T (f(x) · g(x)) =
∑

k

ckxk

where

ck =
∑

i

ai · bk−i =
∑

i

ai · bk−i =
∑

i

ai · bk−i,

so that T (f(x) · g(x)) = T (f(x)) · T (g(x)) in Zp[x].

Therefore,

T (f(x) + g(x)) = T (f(x)) + T (g(x)) and T (f(x) · g(x)) = T (f(x)) · T (g(x))

for all f(x), g(x) ∈ Z[x], and T : Z[x] −→ Zp[x] is a ring homomorphism.

To see that T is onto, given any g(x) =
∑

i

aix
i ∈ Zp[x], we have

g(x) = T (f(x))

where f(x) =
∑

i

aix
i ∈ Z[x].

(b) If f(x) = g(x) · h(x) in Z[x] and p is a prime that divides every coefficient of f(x), then

f(x) = g(x) · h(x) = 0

in Zp[x], and since Zp[x] is an integral domain, then either g(x) = 0 or h(x) = 0, that is, either
all coefficients of g(x) are divisible by p, or all coefficients of h(x) are divisible by p.



8. (a) State the Chinese Remainder Theorem.

(b) When the marchers in the annual Mathematics Department Parade lined up 4 abreast, there was
1 odd person; when they tried 5 abreast, there were 2 left over; and when they tried 7 abreast,
there were 3 left over. How large is the department?

Solution:

(a) The Chinese Remainder Theorem states that if the positive integers m1, m2, . . . , mk are
pairwise relatively prime, then the system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ ak (mod mk)

has a unique solution modulo M = m1 · m2 · · · ·mk.

(b) We have to solve the system of congruences

x ≡ 1 (mod 4)

x ≡ 2 (mod 5)

x ≡ 3 (mod 7)

where m1 = 4, m2 = 5, and m3 = 7. As in class, we let

M1 = m2 · m3 = 5 · 7 = 35, M2 = m1 · m3 = 4 · 7 = 28, M3 = m1 · m2 = 4 · 5 = 20,

and let

y1 ≡ M−1

1
(mod m1) ≡ 3 (mod 4)

y2 ≡ M−1

2
(mod m2) ≡ 2 (mod 5)

y3 ≡ M−1

3
(mod m3) ≡ 6 (mod 7)

then the solution is

x ≡ a1 · y1 · M1 + a2 · y2 · M2 + a3 · y3 · M3 (mod m1 · m2 · m3),

and we have
x ≡ 1 · 3 · 35 + 2 · 2 · 28 + 3 · 6 · 20 ≡ 17 (mod 140).

However, in light of the fact that they have an annual parade, a more reasonable size for the
Department of Mathematics might be x = 17 + 140 = 157.


