

Assignment 4, due Monday June 11, 2007

Question 1. [Exercises 3.3, # 2]

Let the ring $R = \{0, e, b, c\}$ with addition and multiplication defined by the following tables. Use tables to show that $\mathbb{Z}_2 \times \mathbb{Z}_2$ is isomorphic to the ring R.

	+	0	e	b	c	•	0	e	b	c
	0	0	e	b	c	0	0	0	0	0
	e	e	0	c	b	e	0	e	b	С
	b	b	c	0	e	b	0	b	b	0
_	c	С	b	e	0	c	0	С	0	С

Question 2. [Exercises 3.3, # 7]

Let $\mathbb{Q}(\sqrt{2}) = \{r + s\sqrt{2} \mid r, s \in \mathbb{Q}\}.$

- (a) Show that $\mathbb{Q}(\sqrt{2})$ is a subfield of \mathbb{R} .
- (b) Prove that the function f : $\mathbb{Q}(\sqrt{2}) \longrightarrow \mathbb{Q}(\sqrt{2})$ given by

$$f(a+b\sqrt{2}) = a - b\sqrt{2}, \quad a, b \in \mathbb{Q}$$

is an isomorphism.

Question 3. [Exercises 4.1, # 3].

- (a) List all polynomials of degree 3 in $\mathbb{Z}_2[x]$.
- (b) List all polynomials of degree less than 3 in $\mathbb{Z}_3[x]$.

Question 4. [Exercises 4.1, # 10].

If $f(x), g(x) \in R[x]$ and $f(x) + g(x) \neq 0_R$, show that

 $\deg[f(x) + g(x)] \le \max\{\deg f(x), \deg g(x)\}.$

Question 5. [Exercises 4.2, # 4].

- (a) Let $f(x), g(x) \in F[x]$, where F is a field. If $f(x) \mid g(x)$ and $g(x) \mid f(x)$, show that f(x) = cg(x) for some nonzero $c \in F$.
- (b) If f(x) and g(x) in part (a) are monic, show that f(x) = g(x).

Question 6. [Exercises 4.2, # 10].

Find the gcd of x + a + b and $x^3 - 3abx + a^3 + b^3$ in $\mathbb{Q}[x]$.

Question 7. [Exercises 4.3, # 3].

List all associates of

(a) $x^2 + x + 1$ in $\mathbb{Z}_5[x]$. (b) 3x + 2 in $\mathbb{Z}_7[x]$.

Question 8. [Exercises 4.3, # 12].

Express $x^4 - 4$ as a product of irreducibles in $\mathbb{Q}[x]$, in $\mathbb{R}[x]$, and in $\mathbb{C}[x]$.

Question 9. [Exercises 4.4, # 10].

Find a prime p > 5 such that $x^2 + 1$ is reducible in $\mathbb{Z}_p[x]$.

Question 10. [Exercises 4.5, # 3].

If a monic polynomial with integer coefficients has a root in \mathbb{Q} , show that this root must be an integer.

Question 11. [Exercises 4.6, #6].

Let $f(x) = ax^2 + bx + c \in \mathbb{R}[x]$ with $a \neq 0$. Prove that the roots of f(x) in \mathbb{C} are

$$\frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{and} \quad \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Hint: Show that $ax^2 + bx + c = 0$ is equivalent to $x^2 + (b/a)x = -c/a$; then complete the square to find x.