

Assignment 3, due Wednesday May 23, 2007

Question 1. [Exercises 3.1, # 2]

Let $R = \{0, e, b, c\}$ with addition and multiplication defined by the following tables. Assume associativity and distributivity and show that R is a ring with identity. Is R commutative? Is R a field?

			b					e		
			b		-			0		
			С		-			e		
			0		-			b		
c	c	b	e	0	-	c	0	с	0	c

Question 2. [Exercises 3.1, # 10]

Let $\mathbb{Z}[i]$ denote the set $\{a + b \ i \ | \ a, b \in \mathbb{Z}\}$. Show that $\mathbb{Z}[i]$ is a subring of \mathbb{C} .

Question 3. [Exercises 3.1, # 12].

Let T be the ring of continuous functions from \mathbb{R} to \mathbb{R} . Let

$$S = \{ f \in T \mid f(2) = 0 \}.$$

Is S a subring of T?

Question 4. [Exercises 3.1, # 16].

Show that the subset $R = \{0, 3, 6, 9, 12, 15\}$ of \mathbb{Z}_{18} is a subring. Does R have an identity?

Question 5. [Exercises 3.1, # 18].

Define a new addition \oplus and multiplication \odot on \mathbb{Z} by

 $a \oplus b = a + b - 1$ and $a \odot b = a + b - ab$,

where the operations on the right-hand side of the equal signs are ordinary addition, subtraction, and multiplication. Prove that with the new operations \oplus and \odot , \mathbb{Z} is an integral domain.

Question 6. [Exercises 3.1, # 24].

The addition table and part of the multiplication table for a three-element ring are given below. Use the distributive laws to complete the multiplication table.

+	r	s	t		•	r	s	t
r	r	s	t	2	r	r	r	r
s	s	t	r		s	r	t	
t	t	r	s	1	t	r		

Question 7. [Exercises 3.2, # 2].

An element e of a ring is said to be **idempotent** if $e^2 = e$.

- (a) Find four idempotent elements in the ring $M(\mathbb{R})$.
- (b) Find all idempotents in \mathbb{Z}_{12} .
- (c) Prove that the only idempotents in an integral domain are O_R and 1_R .

Question 8. [Exercises 3.2, # 12].

- (a) Prove that [a] is a unit in \mathbb{Z}_n if and only if (a, n) = 1 in \mathbb{Z} .
- (b) Prove that [a] is a nonunit in \mathbb{Z}_n if and only if [a] is a zero divisor.