

Assignment 2, due Thursday May 17, 2007

Question 1. [Exercises 2.1, # 12]

Which of the following congruences have solutions:

(a) $x^2 \equiv 1 \pmod{3}$ (b) $x^2 \equiv 2 \pmod{7}$ (c) $x^2 \equiv 3 \pmod{11}$

Question 2. [Exercises 2.1, # 32]

Let a, b, n be integers with n > 0. If (a, n) does not divide b, prove that the congruence $ax \equiv b \pmod{n}$ has no solution.

Question 3. [Exercises 2.2, # 8].

- (a) Solve the equation $x^2 + x = 0$ in \mathbb{Z}_5 .
- (b) Solve the equation $x^2 + x = 0$ in \mathbb{Z}_6 .
- (c) If p is prime, prove that the only solutions of $x^2 + x = 0$ in \mathbb{Z}_p are 0 and p 1.

Question 4. [Exercises 2.2, # 10].

- (a) Find all a in \mathbb{Z}_5 for which the equation ax = 1 has a solution. Then do the same thing for
- (b) \mathbb{Z}_4 (c) \mathbb{Z}_3 (d) \mathbb{Z}_6

Question 5. [Exercises 2.3, # 2].

How many solutions does the equation 6x = 4 have in

(a) \mathbb{Z}_7 ? (b) \mathbb{Z}_8 ? (c) \mathbb{Z}_9 ? (d) \mathbb{Z}_{10} ?

Question 6. [Exercises 2.3, # 4].

If n is composite, prove that there exist $a, b \in \mathbb{Z}_n$ such that $a \neq 0$ and $b \neq 0$ but ab = 0.

Question 7. [Exercises 2.3, # 6].

Let a and n be integers with n > 1. Prove that (a, n) = 1 in \mathbb{Z} if and only if the equation [a] x = [1] in \mathbb{Z}_n has a solution.

Question 8. [Exercises 2.3, # 12].

Let a, b, n be integers with n > 1. Describe the solutions in \mathbb{Z} of the congruence $ax \equiv b \pmod{n}$.