Assignment 2, due Thursday May 17, 2007

Question 1. [Exercises 2.1, \# 12]
Which of the following congruences have solutions:
(a) $x^{2} \equiv 1(\bmod 3)$
(b) $x^{2} \equiv 2(\bmod 7)$
(c) $x^{2} \equiv 3(\bmod 11)$

Question 2. [Exercises 2.1, \# 32]
Let a, b, n be integers with $n>0$. If (a, n) does not divide b, prove that the congruence $a x \equiv b(\bmod n)$ has no solution.

Question 3. [Exercises 2.2, \# 8].
(a) Solve the equation $x^{2}+x=0$ in \mathbb{Z}_{5}.
(b) Solve the equation $x^{2}+x=0$ in \mathbb{Z}_{6}.
(c) If p is prime, prove that the only solutions of $x^{2}+x=0$ in \mathbb{Z}_{p} are 0 and $p-1$.

Question 4. [Exercises 2.2, \# 10].
(a) Find all a in \mathbb{Z}_{5} for which the equation $a x=1$ has a solution. Then do the same thing for
(b) \mathbb{Z}_{4}
(c) \mathbb{Z}_{3}
(d) \mathbb{Z}_{6}

Question 5. [Exercises 2.3, \# 2].
How many solutions does the equation $6 x=4$ have in
(a) \mathbb{Z}_{7} ?
(b) \mathbb{Z}_{8} ?
(c) \mathbb{Z}_{9} ?
(d) \mathbb{Z}_{10} ?

Question 6. [Exercises 2.3, \# 4].

If n is composite, prove that there exist $a, b \in \mathbb{Z}_{n}$ such that $a \neq 0$ and $b \neq 0$ but $a b=0$.
Question 7. [Exercises 2.3, \# 6].
Let a and n be integers with $n>1$. Prove that $(a, n)=1$ in \mathbb{Z} if and only if the equation $[a] x=[1]$ in \mathbb{Z}_{n} has a solution.

Question 8. [Exercises 2.3, \# 12].
Let a, b, n be integers with $n>1$. Describe the solutions in \mathbb{Z} of the congruence $a x \equiv b(\bmod n)$.

