Assignment 1, due Friday May 11, 2007

Question 1. [Exercises 1.1, \# 6]

Use the division algorithm to prove that every odd integer is either of the form $4 k+1$ or of the form $4 k+3$ for some integer k.

Question 2. [Exercises 1.1, \# 8]

(a) Divide $5^{2}, 7^{2}, 11^{2}, 15^{2}$, and 27^{2} by 8 and note the remainder in each case.
(b) Make a conjecture about the remainder when the square of an odd integer is divided by 8.
(c) Prove your conjecture.

Question 3. [Exercises 1.2, \# 8].

If $r \in \mathbb{Z}$ and r is a nonzero solution of $x^{2}+a x+b=0$ (where $a, b \in \mathbb{Z}$), prove that $r \mid b$.

Question 4. [Exercises 1.2, \# 10].
Prove that $(n, n+1)=1$ for every positive integer n.

Question 5. [Exercises 1.2, \# 16].
If $(a, b)=d$, prove that $\left(\frac{a}{d}, \frac{b}{d}\right)=1$.

Question 6. [Exercises 1.2, \# 26].
Let $a, b, c \in \mathbb{Z}$. Prove that the equation $a x+b y=c$ has integer solutions if and only if $(a, b) \mid c$.

Question 7. [Exercises 1.2, \# 32].
Prove that a positive integer is divisible by 3 if and only if the sum of its digits is divisible by 3 .
[Hint: $10^{3}=999+1$ and similarly for other powers of 10.$]$

Question 8. [Exercises 1.3, \# 2].
Let p be an integer other than $0, \pm 1$. Prove that p is prime if and only if for each $a \in \mathbb{Z}$ either $(a, p)=1$ or $p \mid a$.

Question 9. [Exercises 1.3, \# 8].
Prove that $(a, b)=1$ if and only if there is no prime p such that $p \mid a$ and $p \mid b$.

Question 10. [Exercises 1.3, \# 12].
(a) If $3 \mid\left(a^{2}+b^{2}\right)$, prove that $3 \mid a$ and $3 \mid b$.
[Hint: If $3 \nmid a$, then $a=3 k+1$ or $a=3 k+2$.]
(b) If $5 \mid\left(a^{2}+b^{2}+c^{2}\right)$, prove that $5 \mid a$ or $5 \mid b$ or $5 \mid c$.

Question 11. [Exercises 1.3, \# 20].

(a) Prove that there are no nonzero integers a, b such that $a^{2}=2 b^{2}$.
[Hint: Use the Fundamental Theorem of Arithmetic or Theorem 1.8.]
(b) Prove that $\sqrt{2}$ is irrational.
[Hint: Use proof by contradiction (Appendix A). Assume that $\sqrt{2}=a / b$ (with $a, b \in \mathbb{Z}$) and use part (a) to reach a contradiction.]

