

Assignment 1, due Friday May 11, 2007

Question 1. [Exercises 1.1, # 6]

Use the division algorithm to prove that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k.

Question 2. [Exercises 1.1, # 8]

- (a) Divide 5^2 , 7^2 , 11^2 , 15^2 , and 27^2 by 8 and note the remainder in each case.
- (b) Make a conjecture about the remainder when the square of an odd integer is divided by 8.
- (c) Prove your conjecture.

Question 3. [Exercises 1.2, # 8].

If $r \in \mathbb{Z}$ and r is a nonzero solution of $x^2 + ax + b = 0$ (where $a, b \in \mathbb{Z}$), prove that $r \mid b$.

Question 4. [Exercises 1.2, # 10].

Prove that (n, n + 1) = 1 for every positive integer n.

Question 5. [Exercises 1.2, # 16].

If (a, b) = d, prove that $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

Question 6. [Exercises 1.2, # 26].

Let a, b, $c \in \mathbb{Z}$. Prove that the equation ax + by = c has integer solutions if and only if $(a, b) \mid c$.

Question 7. [Exercises 1.2, # 32].

Prove that a positive integer is divisible by 3 if and only if the sum of its digits is divisible by 3.

[*Hint*: $10^3 = 999 + 1$ and similarly for other powers of 10.]

Question 8. [Exercises 1.3, # 2].

Let p be an integer other than 0, ± 1 . Prove that p is prime if and only if for each $a \in \mathbb{Z}$ either (a, p) = 1 or $p \mid a$.

Question 9. [Exercises 1.3, # 8].

Prove that (a, b) = 1 if and only if there is no prime p such that $p \mid a$ and $p \mid b$.

Question 10. [Exercises 1.3, # 12].

- (a) If 3 | (a² + b²), prove that 3 | a and 3 | b.
 [*Hint*: If 3 ∤ a, then a = 3k + 1 or a = 3k + 2.]
- (b) If $5 | (a^2 + b^2 + c^2)$, prove that 5 | a or 5 | b or 5 | c.

Question 11. [Exercises 1.3, # 20].

- (a) Prove that there are no nonzero integers a, b such that $a^2 = 2b^2$. [*Hint*: Use the Fundamental Theorem of Arithmetic or Theorem 1.8.]
- (b) Prove that $\sqrt{2}$ is irrational.

[*Hint*: Use proof by contradiction (Appendix A). Assume that $\sqrt{2} = a/b$ (with $a, b \in \mathbb{Z}$) and use part (a) to reach a contradiction.]