

MATH 225 Summer 2005 Linear Algebra II Assignment 4 Due: Wednesday August 3, 2005

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [p 382. #24]

Verify the *parallelogram law* for vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n :

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2).$$

Question 2. [p 382. #28]

Suppose that \mathbf{y} is orthogonal to \mathbf{u} and \mathbf{v} . Show that \mathbf{y} is orthogonal to every \mathbf{w} in span $\{\mathbf{u}, \mathbf{v}\}$. *Hint*: An arbitrary \mathbf{w} in span $\{\mathbf{u}, \mathbf{v}\}$ has the form

$$\mathbf{w} = \lambda_1 \mathbf{u} + \lambda_2 \mathbf{v}.$$

Show that \mathbf{y} is orthogonal to such a vector \mathbf{w} .

Question 3. [p 392. #12]

Compute the orthogonal projection of (1, -1) onto the line through (-1, 3) and the origin.

Question 4. [p 393. #25]

Let U be an $m \times n$ matrix with orthonormal columns, and let **x** and **y** be in \mathbb{R}^n , show that

- (i) $||U\mathbf{x}|| = ||\mathbf{x}||$.
- (ii) $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}.$
- (iii) $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = 0$.

Question 5. [p 400. #12]

Let $\mathbf{v}_1 = (1, -2, -1, 2)$, $\mathbf{v}_2 = (-4, 1, 0, 3)$, and $\mathbf{y} = (3, -1, 1, 13)$. Find the closest point to \mathbf{y} in the subspace W spanned by \mathbf{v}_1 and v_2 .

Question 6. [p 401. #24]

Let W be a subspace of \mathbb{R}^n with an orthogonal basis $\{\mathbf{w}_1, \ldots, \mathbf{w}_p\}$, and let $\{\mathbf{v}_1, \ldots, \mathbf{v}_q\}$ be an orthogonal basis for W^{\perp} .

- (i) Explain why $\{\mathbf{w}_1, \ldots, \mathbf{w}_p, \mathbf{v}_1, \ldots, \mathbf{v}_q\}$ is an orthogonal set.
- (ii) Explain why the set in part (i) spans \mathbb{R}^n .
- (iii) Show that $\dim(W) + \dim(W^{\perp}) = n$.

Question 7. [p 408. #12]

Given the matrix $A = \begin{pmatrix} 1 & 3 & 5 \\ -1 & -3 & 1 \\ 0 & 2 & 3 \\ 1 & 5 & 2 \\ 1 & 5 & 8 \end{pmatrix}$, find an orthogonal basis for the column space of A.

Find a QR factorization of the matrix in Question 7.

Question 9. [p 416. #4]

Let $A = \begin{pmatrix} 1 & 3\\ 1 & -1\\ 1 & 1 \end{pmatrix}$, and $\mathbf{b} = \begin{pmatrix} 5\\ 1\\ 0 \end{pmatrix}$.

(a) Find a least-squares solution of $A\mathbf{x} = \mathbf{b}$ by constructing the normal equations for $\hat{\mathbf{x}}$, and

(b) solving for $\widehat{\mathbf{x}}$.

Question 10. [p 417. #24]

Find a formula for the least-squares solution of $A\mathbf{x} = \mathbf{b}$ when the columns of A are orthonormal.