

MATH 225 Summer 2005 Linear Algebra II Assignment 1 Due: Wednesday July 13, 2005

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [p 224. #20]

The set of all continuous real-valued functions defined on a closed interval [a, b] in \mathbb{R} is denoted by C[a, b].

- (a) Show that C[a, b] is a subspace of the vector space of all real-valued functions defined on [a, b].
- (b) Let $V = {\mathbf{f} \in C[a, b] : \mathbf{f}(a) = \mathbf{f}(b)}$. Show that V is a subspace of C[a, b].

Question 2. [p 224. #22]

Let F be a fixed 3×2 matrix, and let H be the set of all matrices A in $\mathbb{M}_{2\times 4}$ with the property that FA = 0 (the zero matrix in $\mathbb{M}_{3\times 4}$). Determine if H is a subspace of $\mathbb{M}_{2\times 4}$.

Question 3. [p 225. #32]

Let H and K be subspaces of a vector space V. The **intersection** of H and K, written as $H \cap K$, is the set of \mathbf{v} in V that belong to both H and K, that is, $H \cap K = {\mathbf{v} \in V : \mathbf{v} \in H \text{ and } \mathbf{v} \in K}$. Show that $H \cap K$ is a subspace of V. Give an example in \mathbb{R}^2 to show that the union of two subspaces is not, in general, a subspace.

Question 4. [p 235. #30]

Let $T : V \longrightarrow W$ be a linear transformation from a vector space V into a vector space W. Prove that the range of T is a subspace of W. [*Hint*: Typical elements of the range have the form $T(\mathbf{x})$ and $T(\mathbf{w})$ for some \mathbf{x}, \mathbf{w} in V.]

Question 5. [p 236. #34]

Define $T : C[0,1] \longrightarrow C[0,1]$ as follows: For **f** in C[0,1], let $T(\mathbf{f})$ be the antiderivative **F** of **f** such that $\mathbf{F}(0) = 0$. Show that T is a linear transformation and describe the kernel of T.

Question 6. [p 236. #36]

Let V and W be vector spaces and let $T : V \longrightarrow W$ be a linear transformation. Let Z be a subspace of W, and let U be the set of all \mathbf{x} in V such that $T(\mathbf{x})$ is in Z. Show that U is a subspace of V. This subspace is usually denoted by $T^{-1}(Z)$.

Question 7. [p 244. #24]

Let $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ be a linearly independent set in \mathbb{R}^n . Explain why \mathcal{B} must be a basis for \mathbb{R}^n .

Question 8. [p 244. #29]

Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ be a set of k vectors in \mathbb{R}^n , with k < n. Explain why S cannot be a basis for \mathbb{R}^n .

Question 9. [p 244. #30]

Let $S = {\mathbf{v}_1, \ldots, \mathbf{v}_k}$ be a set of k vectors in \mathbb{R}^n , with k > n. Explain why S cannot be a basis for \mathbb{R}^n .

Question 10. [p 254. #18]

Let $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ be a basis for a vector space V. Explain why the \mathcal{B} -coordinate vectors of $\mathbf{b}_1, \ldots, \mathbf{b}_n$ are the columns $\mathbf{e}_1, \ldots, \mathbf{e}_n$ of the $n \times n$ identity matrix.

Question 11. [p 254. #24]

Let V be a vector space with basis $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ and the coordinate mapping $\mathbf{x} \longrightarrow [\mathbf{x}]_{\mathcal{B}}$. Show that the coordinate map is *onto* \mathbb{R}^n , that is, given any \mathbf{y} in \mathbb{R}^n , with entries y_1, \ldots, y_n , produce a \mathbf{u} in V such that $[\mathbf{u}]_{\mathcal{B}} = \mathbf{y}$.

Question 12. [p 254. #25]

Let V be a vector space with basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and the coordinate mapping $\mathbf{x} \longrightarrow [\mathbf{x}]_{\mathcal{B}}$. Show that a subset $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in V is linearly independent if and only if the set of coordinate vectors $\{[\mathbf{u}_1]_{\mathcal{B}}, \dots, [\mathbf{u}_p]_{\mathcal{B}}\}$ is linearly independent in \mathbb{R}^n .

Hint: Explain why, since the coordinate mapping is one-to-one, the following equations have the same solutions, c_1, \ldots, c_p .

$$c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p = \mathbf{0} \quad (\text{zero vector in } V)$$
$$c_1 [\mathbf{u}_1]_{\mathcal{B}} + \dots + c_p [\mathbf{u}_p]_{\mathcal{B}} = [\mathbf{0}]_{\mathcal{B}} \quad (\text{zero vector in } \mathbb{R}^n)$$

Question 13. [p 261 #21]

The first four **Hermite polynomials** are 1, 2t, $-2+4t^2$, and $-12t+8t^3$. These polynomials arise naturally in the study of certain important differential equations in mathematical physics. Show that the first four Hermite polynomials form a basis for \mathbb{P}_3 .

Question 14. [p 261. #22]

The first four Laguerre polynomials are $1, 1 - t, 2 - 4t + t^2$, and $6 - 18t + 9t^2 - t^3$. Show that these polynomials form a basis for \mathbb{P}_3 .

Question 15. [p 262. #28]

Show that the space $C(\mathbb{R})$ of all continuous functions defined on the real line is an infinite-dimensional vector space.