
Solutions to Assignment 4

Problem 1. How many triangles are formed using chords and sides of a convex n−gon, where the vertices
of the triangle need not be vertices of the n−gon?

For example, one such triangle is shown below.

Assume that no three chords meet at the same interior point.

Hint: Relate different sorts of triangles to different sized sets of vertices of the polygon.

Solution: The number of triangles with 3 vertices on the polygon is

(

n

3

)

.

The number of triangles with 2 vertices on the polygon is 4

(

n

4

)

;

the sides to the third triangle vertex extend to two other polygon vertices, and the chords from each set of
4 polygon vertices create four such triangles.



The number of triangles with 1 vertex on the polygon is 5

(

n

5

)

;

the sides extend to four other polygon vertices, and the chords from each set of 5 polygon vertices create
five such triangles.

The number of triangles with 0 vertices on the polygon is

(

n

6

)

;

the sides extend to six polygon vertices, and the chords from each set of 6 polygon vertices create exactly
one such triangle.

Thus, the number of triangles formed using the chords and sides of a convex n-gon is
(

n

3

)

+ 4

(

n

4

)

+ 5

(

n

5

)

+

(

n

6

)

.

Problem 2. The Fibonacci Sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, · · ·

where each term is the sum of the two preceding terms, satisfies the recurrence relation

Fn+2 = Fn+1 + Fn

F0 = 0

F1 = 1

for n = 0, 1, 2, . . . .

(a) Show that
Fn+m+1 = Fm+1Fn+1 + FmFn

for all m, n ≥ 0.

(b) Show that
F3n = F 3

n+1 + F 3
n − F 3

n−1

for all n ≥ 1.

(c) Show that

F2n =

(

n

0

)

F0 +

(

n

1

)

F1 +

(

n

2

)

F2 +

(

n

3

)

F3 + · · · +
(

n

n

)

Fn

for all n ≥ 0.



Solution:

(a) Letting A =

(

1 1
1 0

)

, an easy induction argument shows that

Ak =

(

Fk+1 Fk

Fk Fk−1

)

for all integers k ≥ 1.

Therefore,

Am+m =

(

Fm+n+1 Fm+n

Fm+n Fm+n−1

)

for all positive integers m and n. On the other hand, Am+n = Am · An, so that

Am+n =

(

Fm+1 Fm

Fm Fm−1

)(

Fn+1 Fn

Fn Fn−1

)

=

(

Fm+1Fn+1 + FmFn Fm+1Fn + FmFn−1

FmFn+1 + Fm−1Fn FmFn + Fm−1Fn−1

)

and equating the entries in the second row and the first column, we have

Fm+n = FmFn+1 + Fm−1Fn.

(b) In part (a), replace m by n and n by n − 1 to get

F2n−1 = F 2
n + F 2

n−1. (1)

Next, replace m by n in part (a) to get

F2n = FnFn+1 + Fn−1Fn = Fn+1

[

Fn+1 − Fn−1

]

+ Fn−1

[

Fn+1 − Fn−1

]

= F 2
n+1 − F 2

n−1. (2)

Finally, replace m by 2n in part (a) and use (1) and (2) to get

F3n = F2nFn+1 + F2n−1Fn

= F 3
n+1 − Fn+1F

2
n−1 + F 3

n + FnF 2
n−1

= F 3
n+1 + F 3

n − F 2
n−1

[

Fn+1 − Fn

]

= F 3
n+1 + F 3

n − F 3
n−1.

(c) From Binet’s formula for the Fibonacci sequence we have

Fk =
1√
5





(

1 +
√

5

2

)k

−
(

1 −
√

5

2

)k




for k ≥ 0. Therefore, from the binomial theorem, for n ≥ 0 we have

n
∑

k=0

(

n

k

)

Fk =
1√
5

n
∑

k=0

(

n

k

)

(

1 +
√

5

2

)k

− 1√
5

n
∑

k=0

(

n

k

)

(

1 −
√

5

2

)k

=
1√
5

(

1 +
1 +

√
5

2

)n

− 1√
5

(

1 +
1 −

√
5

2

)n

=
1√
5

(

3 +
√

5

2

)n

− 1√
5

(

3 −
√

5

2

)n



However,

3 +
√

5

2
=

(

1 +
√

5

2

)2

and
3 −

√
5

2
=

(

1 −
√

5

2

)2

,

so that
n
∑

k=0

(

n

k

)

Fk =
1√
5

(

1 +
√

5

2

)2n

− 1√
5

(

1 −
√

5

2

)2n

= F2n.

Problem 3. There are 2n people standing in line at a box office. Admission is one dollar and n of the
people have exactly this amount. The other n each have exactly one two dollar coin. Unfortunately, the box
office starts off with no change. A sequence of these 2n people is said to be workable if, up to each point,
the number of people with one dollar is not less than the number of people with 2 dollars. In such situations
correct change can be given to each person who needs it. How many workable situations are there?

Hint: Let L stand for anyone with a dollar and T stand for anyone with two dollars. The total number of
permutations of n T ’s and n L’s is

(

2n

n

)

since each arrangement is determined by which of the 2n possible locations are chosen for the n T ’s. Now
count the number of nonworkable permutations and subtract this from the total number to get the number
of workable permutations.

Solution: Note that the sequence
L L T T T L

is not workable, since by the time the third T wants change, there is none left, and this is typical of a
nonworkable sequence, there is a first T who cannot receive change. We will use this fact to count the
number of nonworkable sequences.

If we have a nonworkable permutation, the first snag occurs at some T that is preceded by an equal number
of T ’s and L’s, say m of each. This T occurs at the 2m + 1st term.

If we take the first 2m + 1 terms and reverse them, that is, replace each T by L and each L by T, then the
whole permutation now has n+1 L’s and n−1 T ’s (the snag becomes an L and the equal number of T ’s and
L’s before it are just reversed). Every nonworkable sequence becomes, by this process, a different sequence
of n + 1 L’s and n − 1 T ’s

Also, every permutation of n + 1 L’s and n− 1 T ’s can be readjusted back into some nonworkable sequence
by noting the first time the L’s outnumber the T ’s by 1 (since there are more L’s than T ’s this must happen)
and reversing the sequence up to and including that pivotal L.

The number of permutations of n + 1 L’s and n − 1 T ’s is given by

(

2n

n − 1

)

since each is determined by

the choice of the n− 1 locations for the T ’s. By the correspondence described above, this is the same as the
number of nonworkable sequences.

Therefore, the number of workable permutations is
(

2n

n

)

−
(

2n

n − 1

)

=
(2n)!

n! n!
− (2n)!

(n + 1)! (n − 1)!
=

(2n)!

n! (n − 1)!

[

1

n
− 1

n + 1

]

=
(2n)!

n! (n − 1)!

1

n(n + 1)
=

1

n + 1

(2n)!

n! n!

=
1

n + 1

(

2n

n

)

that is, the number of workable permutations is the nth Catalan number
1

n + 1

(

2n

n

)

.



Problem 4. For n ≥ 0, let an be the number of regions on the surface of a sphere formed by n great circles,
no three of which are concurrent.

(a) What are a0, a1, a2, and a3 ?

(b) Find a recurrence relation and initial condition satisfied by an.

(c) Solve the recurrence relation you found in part (b).

Solution:

(a) From the figure below it is obvious that a0 = 1, a1 = 2, a2 = 4 and a3 = 8.

(b) It looks at first like an = 2n for all n ≥ 0, but this is not the case.

Suppose that n circles have been drawn on the surface of the sphere so that no three are concurrent,
and suppose that an (n + 1)st circle is added so that no three of the n + 1 circles are concurrent.

The new circle meets each of the old circles in two points, making 2n points of intersection on the new
circle, and these 2n points are all different since no three of the circles are concurrent.

The 2n points divide the new circle into 2n arcs. Each of these arcs divides one of the existing regions
into two parts, so there are

an + 2n

regions formed by the n + 1 great circles. Therefore, an satisfies the recurrence relation and initial
value

an+1 = an + 2n, n ≥ 1

a1 = 2.

(c) For each integer k with 1 ≤ k ≤ n − 1, we have

ak+1 = ak + 2k,

so that

an − a1 =

n−1
∑

k=1

(ak+1 − ak) =

n−1
∑

k=1

2k = n(n − 1),

and therefore
an = n(n − 1) + 2

for all n ≥ 1.



Problem 5. Consider a party attended by n married couples. Suppose that no person shakes hands with
his or her spouse, and the 2n − 1 people other than the host shake hands with different numbers of people.
With how many people does the hostess shake hands?

Solution: Let the 2n people be denoted by the set V = {v1, v2, . . . , vn, vn+1, . . . , v2n} and represent the
situation described in the problem statement by a graph G = (V, E) where there is an edge joining vi and
vj if and only if vi and vj have shaken hands.

The degree sequence for the graph, d1 ≥ d2 ≥ · · · ≥ d2n, is given by

2n − 2, 2n − 3, · · · , n + 1, n, · · · , 2, 1, 0

Exactly one of these degrees is repeated, since from the pigeon-hole principle, there must be at least two
vertices with the same degree, and excluding the host, all of the remaining 2n − 1 vertices have different
degrees.

Now, we construct a graph G having the degree sequence above

v

v n
vn+1

v1
v 2

v 3 

2nv

2n-1

2n-2

v

and note the following:

• Since deg(v1) = 2n − 2, then v1 has shaken hands with every one except himself and his spouse, thus
v1 and v2n must be married.

• Since deg(v2) = 2n−3, then v2 has shaken hands with v1, v3, v4, . . . , v2n−2, and therefore v2 and v2n−1

must be married.

• Since deg(v3) = 2n−4, then v3 has shaken hands with v1, v2, v4, . . . , v2n−3, and therefore v3 and v2n−2

must be married.

Continuing in this way, we see that for each k with 1 ≤ k ≤ n − 1, we must have vk married to v2n−k+1.

Thus, v1, v2, . . . , vn−1 are married, respectively, to v2n, v2n−1, . . . , vn+2; but this means that vn and vn+1

must be married, since they are the only two left.

Finally, by construction, vn is adjacent to vk for 1 ≤ k ≤ n − 1, so that deg(vn) = n − 1. Similarly, vn+1 is
adjacent to vk for 1 ≤ k ≤ n − 1, therefore deg(vn+1) = n − 1 also.
Since the degree n − 1 is repeated, then either vn or vn+1 is the host and the other is the hostess. In either
case, the hostess has shaken hands n − 1 times.



Problem 6. Let G be a graph whose vertices correspond to the bit-strings of length n, a = a1a2 · · · an

where ai = 0 or 1, and whose edges are formed by joining those bit-strings which differ in exactly two places.

(a) Show that G is regular, that is, every vertex has the same degree, and find the degree of each vertex.

(b) Find a necessary and sufficient condition that there exist a path joining two vertices a = a1a2 · · · an

and b = b1b2 · · · bn in G.

(c) Find the number of connected components of G.

Solution:

(a) The graph G has 2n vertices, since this is the number of bit-strings of length n. Also, given any vertex
u = u1u2 · · ·un, a vertex v = v1v2 · · · vn is adjacent to u if and only if the Hamming distance between
them is exactly 2, that is, they differ in exactly two bits. Thus the number of vertices adjacent to u is

just the number of ways to choose the two bits in which they differ, that is, deg(u) =

(

n

2

)

=
n(n − 1)

2
for each vertex u in the graph G.

(b) Note that in order to move from a = a1a2 · · · an to an adjacent vertex b = b1b2 · · · bn we need to change
two of the bits in a. If the bits we change are both 0 or they are both 1, then the number of 1’s remains
even or odd. Also, if one of the bits we change is a 0 and the other is a 1, then again, the number
of 1’s remains even or odd. Therefore, as we move from one vertex to an adjacent vertex, the parity
doesn’t change, that is, the number of 1′s in the bit-strings remains even or odd. It follow that there
is a path joining the vertices a and b if and only if the bit strings have the same parity.

(c) The number of connected components in G is two, since all vertices with an odd number of 1’s are in
one component, and all vertices with an even number of 1’s are in another component.

Problem 7. The queen and her prime minister each live in a complex of underground rooms.
The queen’s rooms are 15 in number, 1 for her and 14 for her servants, and they are connected by tunnels.
There is at most one tunnel between any two rooms.
For each of the servant’s rooms, there is one and only one path that leads to the queen’s room.
The prime minister and his cabinet occupy 7 rooms, none of which are the queen’s rooms. There is at most
one tunnel between any two of the prime minister’s rooms.
Together, the underground complexes have a total of 36 tunnels.
Explain why the entire complex is connected.

Solution: Since there is at most one tunnel between any two rooms, we can represent the complex by a
graph whose vertices correspond to the rooms and whose edges correspond to the tunnels between rooms.

If the entire complex is not connected, then there are at least two connected components. The queen’s
complex is connected, since each of the nodes corresponding to the servant’s rooms is in the same connected
component containing the node corresponding to the queen’s room. Also, the queen’s complex contains no
cycles, since for each of the servant’s rooms there is exactly one path that leads to the queen’s room. Thus,
the queen lives in a tree which has 15 vertices and 15− 1 = 14 edges.
Since there are a total of 26 edges in the graph, the prime minister’s complex would have 7 vertices and
26 − 14 = 22 edges. Thus, if there were no edge from the queen’s complex to the prime minister’s complex,
the connected component containing the prime minister’s rooms would have 7 vertices and 22 edges. This
is a contradiction since K7 has the maximum number of edges for a graph with 7 vertices, namely,

(

7

2

)

=
7 · 6
2

= 21

edges. Therefore the entire complex is connected.



Problem 8. By using various combinations of the red, green, and blue filters on a spotlight the lighting
technician at a theatre can obtain 8 lighting effects. The filters may be changed one at a time by either
adding one or removing one. Starting and ending with no filters, how can the technician test all the effects
without repeating any effect except the final one.

Solution: The technician can label the combination of filters as (r, g, b), where each of r, g, or b can be 0
or 1, and then use the graph below.

000 001

011010

100 101

110 111


