
Solutions to Assignment 3

Problem 1.

(a) Find a closed form expression for
1 + 2 + 3 + · · · + n.

(b) Make a conjecture about the terms of the following sequence, and prove your conjecture.

1

1 + 2
,

1 + 2

2 + 3 + 4
,

1 + 2 + 3

3 + 4 + 5 + 6
,

1 + 2 + 3 + 4

4 + 5 + 6 + 7 + 8
, . . .

Solution:

(a) We have

Sn = 1 + 2 + · · · + n − 1 + n

Sn = n + n − 1 + · · · + 2 + 1

and adding, we get

2Sn = (1+n)+(2+n−1)+· · ·+(n−1+2)+(n+1) = (n+1)+(n+1)+· · ·+(n+1)+(n+1) = n(n+1),

so that Sn =
n(n + 1)

2
.

(b) Since each of the terms shown above is equal to 1

3
, if we let

an =
1 + 2 + · · · + n

n + n + 1 + · · · + 2n
,

for n ≥ 1, then it appears that an = 1

3
for all n ≥ 1.

In order to see that this is indeed the case, we use the result from part (a) to write

an =
1

2
n(n + 1)

1

2
2n(2n + 1) − 1

2
n(n − 1)

=
n + 1

4n + 2 − (n − 1)
=

n + 1

3n + 3
=

n + 1

3(n + 1)
=

1

3

for n ≥ 1.



Problem 2. Find a closed form expression for

an = 15 + 25 + · · · + n5

for n ≥ 1.

Solution: From the binomial theorem we have

(k + 1)5 − k5 = 5k4 + 10k3 + 10k2 + 5k + 1

for each k = 1, 2, . . . , n. Adding these equations, the sum on the left-hand side telescopes and we get

(n + 1)5 − 15 = 5
n

∑

k=1

k4 + 10
n

∑

k=1

k3 + 10
n

∑

k=1

k2 + 5
n

∑

k=1

k +
n

∑

k=1

1,

and since

n
∑

k=1

1 = n,

n
∑

k=1

k =
n(n + 1)

2
,

n
∑

k=1

k2 =
n(n + 1)(2n + 1)

6
, and

n
∑

k=1

k3 =
n2(n + 1)2

4
,

then we have

(n + 1)5 = 5

n
∑

k=1

k4 +
10

4
n2(n + 1)2 +

10

6
n(n + 1)(2n + 1) +

5

2
n(n + 1) + n + 1,

so that

5
n

∑

k=1

k4 =
(n + 1)

6

[

6(n + 1)4 − 15n2(n + 1) − 10n(2n + 1) − 15n − 6
]

=
(n + 1)

6

[

6n4 + 9n3 + n2 − n
]

=
n(n + 1)

6

[

6n3 + 9n2 + n − 1
]

=
n(n + 1)

6
(2n + 1)(3n2 + 3n − 1)

and therefore,
n

∑

k=1

k4 =
1

30
n(n + 1)(2n + 1)(3n2 + 3n − 1).

Again, from the binomial theorem we have

(k + 1)6 − k6 = 6k5 + 15k4 + 20k3 + 15k2 + 6k + 1

for each k = 1, 2, . . . , n. Adding these equations, the sum on the left-hand side telescopes and we get

(n + 1)6 − 16 = 6

n
∑

k=1

k5 + 15

n
∑

k=1

k4 + 20

n
∑

k=1

k3 + 15

n
∑

k=1

k2 + 6

n
∑

k=1

k +

n
∑

k=1

1,

and using the results above, after simplifying we get

n
∑

k=1

k5 =
1

6
n6 +

1

2
n5 +

5

12
n4 −

1

12
n2

for n ≥ 1.



Problem 3. For each of the following

(a)
n
∑

k=1

(−1)k−1k

(b)
n
∑

k=1

(−1)k−1k2

(c)
n
∑

k=1

(−1)k−1k(k − 1)

find a closed form expression valid for n ≥ 1. Justify your answers, using mathematical induction or otherwise.

Solution:

(a) Note that

1 = 1

1 − 2 = −1

1 − 2 + 3 = 2

1 − 2 + 3 − 4 = −2

1 − 2 + 3 − 4 + 5 = 3

1 − 2 + 3 − 4 + 5 − 6 = −3

...

and it appears that

n
∑

k=1

(−1)k−1k = (−1)n−1

⌊

n + 1

2

⌋

(∗)

for n ≥ 1. We prove this using induction, the base case n = 1 has already been shown to hold, suppose
that (∗) is true for some n ≥ 1, then

n+1
∑

k=1

(−1)k−1k =

n
∑

k=1

(−1)k−1k + (−1)n(n + 1)

= (−1)n−1

⌊

n + 1

2

⌋

+ (−1)n(n + 1)

= (−1)n

{

(n + 1) −

⌊

n + 1

2

⌋}

= (−1)n

⌊

n + 2

2

⌋

,

since
⌊

n + 2

2

⌋

= n + 1 −

⌊

n + 1

2

⌋

,

and (∗) is true for n + 1 also. Therefore, by the principle of mathematical induction (∗) is true for all
n ≥ 1.



(b) Note that

−12 = −1

−12 + 22 = 3 =
3 · 2

2

−12 + 22 − 32 = −6 = −
4 · 3

2

−12 + 22 − 32 + 42 = 10 =
5 · 4

2

−12 + 22 − 32 + 42 − 52 = −15 = −
6 · 5

2

−12 + 22 − 32 + 42 − 52 + 62 = 21 =
7 · 6

2

...

and it appears that

n
∑

k=1

(−1)k−1k2 = (−1)n−1 ·
n(n + 1)

2
(∗∗)

for n ≥ 1. We prove this using induction, the base case n = 1 has already been shown to hold, suppose
that (∗∗) is true for some n ≥ 1, then

n+1
∑

k=1

(−1)k−1k2 =

n
∑

k=1

(−1)k−1k2 + (−1)n(n + 1)2

= (−1)n−1 ·
n(n + 1)

2
+ (−1)n(n + 1)2

= (−1)n(n + 1)
{

n + 1 −
n

2

}

= (−1)n(n + 1)
{n

2
+ 1

}

= (−1)n ·
(n + 1)(n + 2)

2
,

and (∗∗) is true for n + 1 also. Therefore, by the principle of mathematical induction (∗∗) is true for
all n ≥ 1.

(c) Note that

n
∑

k=1

(−1)k−1k(k − 1) =

n
∑

k=1

(−1)k−1k2 −

n
∑

k=1

(−1)k−1k

= (−1)n−1 ·
n(n + 1)

2
− (−1)n−1

⌊

n + 1

2

⌋

,

that is,
n

∑

k=1

(−1)k−1k(k − 1) = (−1)n−1

{

n(n + 1)

2
−

⌊

n + 1

2

⌋}

for n ≥ 1.



Problem 4. For each n ≥ 1, let an be the number of ways to group 2n people into pairs.

(a) Find a recurrence relation and an initial condition satisfied by the sequence {an}n≥1.

(b) Conjecture a value for an, and prove your conjecture is true.

Solution:

(a) Select one person x, then there are 2n−1 choices for x’s partner, and there are 2n−2 people left. The
remaining 2n − 2 people can then be paired off in an−1 ways.

Thus, we have 2n − 1 ways to choose the partner for person x, and for each of these, we have an−1

choices for the other pairs, and {an}n≥1 satisfies the recurrence relation

an = (2n − 1)an−1, n ≥ 2

a1 = 1.

(b) Solving this recurrence relation from the top down, we have

an = (2n − 1)an−1

= (2n − 1)(2n − 3)an−2

= (2n − 1)(2n − 3)(2n− 5)an−3

...

= (2n − 1)(2n − 3)(2n− 5) · · · (2n − (2k − 1))an−k.

When k = n − 1, the recursion stops at a1, so that

an = (2n − 1)(2n − 3)(2n − 5) · · · 5 · 3 · a1

= (2n − 1)(2n − 3)(2n − 5) · · · 5 · 3 · 1,

and therefore

an =
(2n)!

2 · 4 · 6 · · · 2n
=

(2n)!

2n n!
(∗ ∗ ∗)

for n ≥ 1.

Suppose that {an}n≥1 satisfies the recurrence relation

an = (2n − 1)an−1, n ≥ 2

a1 = 1,

we will show by induction that (∗ ∗ ∗) holds for all n ≥ 1.

Base Case: For n = 1, we have
(2 · 1)!

21 · 1!
= 1, and a1 = 1, so that (∗ ∗ ∗) is true for n = 1.

Inductive Step: Assume that (∗ ∗ ∗) is true for some n ≥ 1, then from the recurrence relation and the
inductive hypothesis we have

an+1 = [2(n + 1) − 1]an = (2n + 1)an = (2n + 1)
(2n)!

2n n!
=

(2n + 2)!

2n+1 (n + 1)!
,

and (∗∗∗) is also true for n+1. By the principle of mathematical induction, (∗∗∗) is true for all n ≥ 1.



Problem 5. Show that

an =
1

n + 1

(

2n

n

)

is an integer for n = 1, 2, 3 . . . .

Solution: We have

1

n + 1

(

2n

n

)

=
(2n)!

n!(n + 1)!

=
(2n)!

n!(n + 1)!
[(n + 1) − n]

=
(2n)!

(n!)2
−

(2n)!

(n − 1)!(n + 1)!

=

(

2n

n

)

−

(

2n

n − 1

)

,

and since

(

2n

n

)

and

(

2n

n − 1

)

are integers, then

1

n + 1

(

2n

n

)

is an integer.

Problem 6. A certain computer system considers a string of bits a valid codeword if and only if it contains
an even number of 1′s. For example 1 0 0 0 0 1 is a valid codeword, but 1 0 0 1 0 0 1 is not. Let an be the
number of valid n-bit codewords.

(a) Find a recurrence relation and an initial condition satisfied by an.

(b) Given a positive integer N, how many valid codewords of length at most N are there?

Solution:

(a) The number of n-bit valid codewords that end with a 0 is an−1, since in this case the initial n− 1 bits
must form a valid codeword.

The number of n-bit valid codewords that end with a 1 is 2n−1 − an−1, since in this case the initial
n − 1 bits must form an invalid codeword, and there are 2n−1 − an−1 of these.

Therefore, since every n-bit valid codeword must end in 0 or a 1, the number of valid n-bit codewords
satisfies the recurrence relation

an = an−1 +
(

2n−1 − an−1

)

= 2n−1

for n ≥ 2.

The initial condition satisfied by an is a1 = 1, since the only 1-bit valid codeword is 0.

(b) The number of valid codewords of length at most N is

a1 + a2 + a3 + · · · + aN = 1 + 2 + 22 + · · · + 2N−1 =
2N − 1

2 − 1
= 2N − 1.



Problem 7. A certain basketball team can only sink foul shots and lay-ups, worth 1 and 2 points, respec-
tively. Let an denote the number of ways the team can score n points. (Scoring 1 then 2 is considered to be
different than scoring 2 then 1). Write down a recurrence relation for an with initial conditions for a0 and
a1, and explain why it holds for all n ≥ 2. What is the solution to this recurrence relation?

Solution: For each n ≥ 2, there are exactly two ways to score n points, either the team has scored n − 1
points previously, and then scores 1 point, or the team has scored n − 2 points previously, and then scores
2 points. Since these are the only two possibilities, then we must have

an = an−1 + an−2

for all n ≥ 2.

If n = 0, there is only one way to score this number of points, namely, do not sink any foul shots and do not
sink any lay-ups, therefore a0 = 1.

If n = 1, there is only one way to score this number of points, namely, sink a foul shot, therefore a1 = 1.

The recurrence relation together with the initial conditions are

an = an−1 + an−2, n ≥ 2

a0 = 1

a1 = 1.

We can easily see that this recurrence relation is generating the Fibonacci numbers

a0 = F1 = 1, a1 = F2 = 1, a2 = F3 = 2, a3 = F4 = 3, . . .

and in general, an = Fn+1 for all n ≥ 0, a fact which can be easily proven by induction.

Let bn = an − Fn+1 for n ≥ 0, we will show by induction that bn = 0 for all n ≥ 0.

Base Case : Note that b0 = a0 − F1 = 1 − 1 = 0, b1 = a1 − F2 = 1 − 1 = 0, and b2 = a2 − F3 = 2 − 2 = 0,
and the result is true for 0 ≤ k ≤ 2.

Inductive Step : Assume that bk = 0 for 0 ≤ k ≤ n − 1, then

bn = an − Fn+1 = an−1 + an−2 − (Fn + Fn−1) = (an−1 − Fn) + (an−2 − Fn−1) = bn−1 + bn−2 = 0,

and the result is true for n also.

Therefore, by the principle of strong mathematical induction, bn = 0 for all n ≥ 0, that is, an = Fn+1 for all
n ≥ 0.



Problem 8. Given a positive integer n, consider an equilateral triangle of side n made up of n2 equilateral
triangles of side 1. Let an be the total number of equilateral triangles present for n ≥ 1.

For example, in figure below,

we have
a1 = 1 a2 = 4 + 1 = 5 a3 = 9 + 3 + 1 = 13

(a) Find a recurrence relation and initial condition satisfied by the sequence {an}n≥1.

(b) Conjecture a value for an, and prove your conjecture is true.

Solution:

(a) We can count the number of equilateral triangles an present when we add another row to an equilateral
triangle of side n − 1 as follows:

an = an−1 + U(n) + D(n)

where U(n) is the number of new triangles added which are pointing upwards and D(n) equals the
number of new triangles added which are pointing downwards.

For example, a1 = 1, and

For n = 2, we have U(2) = 2 + 1 = 3 and D(2) = 1, as in the figure,

therefore,
a2 = a1 + U(2) + D(2) = 1 + 3 + 1 = 5.

For n = 3, we have U(3) = 3 + 2 + 1 = 6 and D(3) = 2 + 0 = 2, as in the figure,

therefore,
a3 = a2 + U(3) + D(3) = 5 + 6 + 2 = 13.



For n = 4, we have U(4) = 4 + 3 + 2 + 1 = 10 and D(4) = 3 + 1 = 4, as in the figure,

therefore,
a4 = a3 + U(4) + D(4) = 13 + 10 + 4 = 27.

For n = 5, we have U(5) = 5 + 4 + 3 + 2 + 1 = 15 and D(5) = 4 + 2 = 6, as in the figure,

therefore,
a5 = a4 + U(5) + D(5) = 27 + 15 + 6 = 48.

For n = 6, we have U(6) = 6 + 5 + 4 + 3 + 2 + 1 = 21 and D(6) = 5 + 3 + 1 = 9, as in the figure,

therefore,
a6 = a5 + U(6) + D(6) = 48 + 21 + 9 = 78.



In general, for n ≥ 3, counting the new triangles according to their side lengths, we have

U(n) = n + n − 1 + n − 2 + · · · + 2 + 1 =
n(n + 1)

2
,

and

D(n) = n − 1 + n − 3 + · · · + n − (2bn/2c − 1)

= n
⌊n

2

⌋

− (1 + 3 + · · · + (2bn/2c − 1)

= n
⌊n

2

⌋

−
⌊n

2

⌋2

=
⌊n

2

⌋ (

n −
⌊n

2

⌋)

,

that is,

D(n) =
⌊n

2

⌋

·

⌊

n + 1

2

⌋

since n −
⌊n

2

⌋

=

⌊

n + 1

2

⌋

.

Therefore an satisfies the discrete initial value problem

an = an−1 +
n(n + 1)

2
+

⌊n

2

⌋

·

⌊

n + 1

2

⌋

, n ≥ 2

a1 = 1.

(b) Using the fact that

⌊n

2

⌋

=
2n − (1 − (−1)n)

4
and

⌊

n + 1

2

⌋

=
2n + (1 − (−1)n)

4
,

we see that
⌊n

2

⌋

·

⌊

n + 1

2

⌋

=
n2

4
−

(1 − (−1)n)

8
,

and the difference equation becomes

an = an−1 +
3n2

4
+

n

2
−

(1 − (−1)n)

8

for n ≥ 1. Therefore

an − a1 =

n
∑

k=2

(ak − ak−1)

=
3

4

n
∑

k=2

k2 +
1

2

n
∑

k=2

k −
1

8

n
∑

k=2

(1 − (−1)k)

=
3

4

(

n(n + 1)(2n + 1)

6
− 1

)

+
1

2

(

n(n + 1)

2
− 1

)

−
1

8

n
∑

k=2

(1 − (−1)k)

=
n(n + 1)(2n + 1)

8
−

3

4
+

n(n + 1)

4
−

1

2
−

1

8

n
∑

k=2

(1 − (−1)k),



and since a1 = 1, after simpifying, we get

an =
n(n + 1)(2n + 3)

8
−

1

4
−

1

8

n
∑

k=2

(1 − (−1)k).

Now,

1

8

n
∑

k=2

(1 − (−1)k) =
n − 1

8
−

(1 + (−1)n

16
=

n

8
−

3

16
−

(−1)n

16
,

so that

an =
n(n + 1)(2n + 3)

8
−

1

4
−

n

8
+

3

16
+

(−1)n

16

=
n(n + 1)(2n + 3)

8
−

n

8
−

1 − (−1)n

16

=
n

8
[(n + 1)(2n + 3) − 1] −

1 − (−1)n

16

=
n

8

[

2n2 + 5n + 2
]

−
1 − (−1)n

16

=
n(n + 2)(2n + 1)

8
−

1 − (−1)n

16
,

and therefore

an =
n(n + 2)(2n + 1)

8
−

1 − (−1)n

16

for n ≥ 1. An easy induction proof shows that this is indeed the solution to the recurrence relation
satisfying the initial condition.


