

Assignment 3, due Friday March 9, 2007

Problem 1.

(a) Find a closed form expression for

 $1+2+3+\cdots+n.$

(b) Make a conjecture about the terms of the following sequence, and prove your conjecture.

$$\frac{1}{1+2}$$
, $\frac{1+2}{2+3+4}$, $\frac{1+2+3}{3+4+5+6}$, $\frac{1+2+3+4}{4+5+6+7+8}$, ...

Problem 2. Find a closed form expression for

$$a_n = 1^5 + 2^5 + \dots + n^5$$

for $n \geq 1$.

Problem 3. For each of the following

(a)
$$\sum_{k=1}^{n} (-1)^{k-1} k$$

(b) $\sum_{k=1}^{n} (-1)^{k-1} k^2$
(c) $\sum_{k=1}^{n} (-1)^{k-1} k(k-1)$

find a closed form expression valid for $n \ge 1$. Justify your answers, using mathematical induction or otherwise.

Problem 4. For each $n \ge 1$, let a_n be the number of ways to group 2n people into pairs.

- (a) Find a recurrence relation and an initial condition satisfied by the sequence $\{a_n\}_{n\geq 1}$.
- (b) Conjecture a value for a_n , and prove your conjecture is true.

Problem 5. Show that

$$a_n = \frac{1}{n+1} \binom{2n}{n}$$

is an integer for $n = 1, 2, 3 \dots$

Problem 6. A certain computer system considers a string of bits a valid codeword if and only if it contains an even number of 1's. For example 1 0 0 0 0 1 is a valid codeword, but 1 0 0 1 0 0 1 is not. Let a_n be the number of valid *n*-bit codewords.

- (a) Find a recurrence relation and an initial condition satisfied by a_n .
- (b) Given a positive integer N, how many valid codewords of length at most N are there?

Problem 7. A certain basketball team can only sink foul shots and lay-ups, worth 1 and 2 points, respectively. Let a_n denote the number of ways the team can score n points. (Scoring 1 then 2 is considered to be different than scoring 2 then 1). Write down a recurrence relation for a_n with initial conditions for a_0 and a_1 , and explain why it holds for all $n \ge 2$. What is the solution to this recurrence relation?

Problem 8. Given a positive integer n, consider an equilateral triangle of side n made up of n^2 equilateral triangles of side 1. Let a_n be the total number of equilateral triangles present for $n \ge 1$.

For example, in figure below,

we have

 $a_1 = 1$ $a_2 = 4 + 1 = 5$ $a_3 = 9 + 3 + 1 = 13$

- (a) Find a recurrence relation and initial condition satisfied by the sequence $\{a_n\}_{n>1}$.
- (b) Conjecture a value for a_n , and prove your conjecture is true.