ND@乱象2

Assignment 3, due Friday March 9, 2007

Problem 1.

(a) Find a closed form expression for

$$
1+2+3+\cdots+n
$$

(b) Make a conjecture about the terms of the following sequence, and prove your conjecture.

$$
\frac{1}{1+2}, \quad \frac{1+2}{2+3+4}, \quad \frac{1+2+3}{3+4+5+6}, \quad \frac{1+2+3+4}{4+5+6+7+8},
$$

Problem 2. Find a closed form expression for

$$
a_{n}=1^{5}+2^{5}+\cdots+n^{5}
$$

for $n \geq 1$.
Problem 3. For each of the following
(a) $\sum_{k=1}^{n}(-1)^{k-1} k$
(b) $\sum_{k=1}^{n}(-1)^{k-1} k^{2}$
(c) $\sum_{k=1}^{n}(-1)^{k-1} k(k-1)$
find a closed form expression valid for $n \geq 1$. Justify your answers, using mathematical induction or otherwise.

Problem 4. For each $n \geq 1$, let a_{n} be the number of ways to group $2 n$ people into pairs.
(a) Find a recurrence relation and an initial condition satisfied by the sequence $\left\{a_{n}\right\}_{n \geq 1}$.
(b) Conjecture a value for a_{n}, and prove your conjecture is true.

Problem 5. Show that

$$
a_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

is an integer for $n=1,2,3 \ldots$

Problem 6. A certain computer system considers a string of bits a valid codeword if and only if it contains an even number of $1^{\prime} s$. For example 100001 is a valid codeword, but 1001001 is not. Let a_{n} be the number of valid n-bit codewords.
(a) Find a recurrence relation and an initial condition satisfied by a_{n}.
(b) Given a positive integer N, how many valid codewords of length at most N are there?

Problem 7. A certain basketball team can only sink foul shots and lay-ups, worth 1 and 2 points, respectively. Let a_{n} denote the number of ways the team can score n points. (Scoring 1 then 2 is considered to be different than scoring 2 then 1). Write down a recurrence relation for a_{n} with initial conditions for a_{0} and a_{1}, and explain why it holds for all $n \geq 2$. What is the solution to this recurrence relation?

Problem 8. Given a positive integer n, consider an equilateral triangle of side n made up of n^{2} equilateral triangles of side 1 . Let a_{n} be the total number of equilateral triangles present for $n \geq 1$.

For example, in figure below,

we have

$$
a_{1}=1 \quad a_{2}=4+1=5 \quad a_{3}=9+3+1=13
$$

(a) Find a recurrence relation and initial condition satisfied by the sequence $\left\{a_{n}\right\}_{n \geq 1}$.
(b) Conjecture a value for a_{n}, and prove your conjecture is true.

