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Question 1. [Sec. 14.2, # 8] Given the vector equation

r(t) = 2 sin t i + 3 cos t j,

(a) sketch the plane curve with the given vector equation,

(b) find r′(t),

(c) sketch the position vector r(t) and the tangent vector r′(t) for the value t = π/3.

Solution:

(a) x = 2 sin t, y = 3 cos t implies sin t = x/2, and cos t = y/3, so that

sin2 t + cos2 t =
x2

4
+

y2

9
= 1.

The curve is an ellipse with center at (0, 0) and major axis along the y-axis.
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(b) r′(t) = 〈2 cos t,−3 sin t〉.

(c) See the graph above.

Question 2. [Sec. 14.2, # 26] Find parametric equations for the tangent line to the curve whose
parametric equations are

x = ln t, y = 2
√

t, z = t2, 0 < t < ∞
at the point (0, 2, 1).

Solutions: We have r(t) = 〈ln t, 2
√

t, t2〉, so that r′(t) = 〈1/t, 1/
√

t, 2t〉.

At (0, 2, 1), t = 1, so that r′(1) = 〈1, 1, 2〉 is a direction vector for the tangent line whose parametric equations
are

x = t, y = 2 + t, z = 1 + 2t.



Question 3. [Sec. 14.2, # 30] Given the curve

r(t) = 〈 sinπt, 2 sin πt, cosπt 〉 ,

(a) Find the point of intersection of the tangent lines to the curve at the points where t = 0 and t = 0.5.

(b) Illustrate by graphing the curve and both tangent lines.

Solution:

(a) We first find r′(t) = 〈π cosπt, 2π cosπt,−π sin πt〉. We can use this for direction vectors for the 2
tangent lines.

Let t = 0. r′(0) = 〈π, 2π, 0〉. The point on the curve is (0, 0, 1), and the tangent line is

x = πt, y = 2πt, z = 1.

Let t = 0.5. r′(1/2) = 〈0, 0,−π〉. The point on the curve is (1, 2, 0), and the tangent line is

x = 1, y = 2, z = −πs.

At the point of intersection of these tangent lines: x : πt = 1 implies t = 1/π and z : −πs = 1 implies
s = −1/π, so that the point of intersection is (1, 2, 1).

(b) The graph and the two tangent lines are sketched below.
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Question 4. [Sec. 14.2, # 40] Find r(t) if

r′(t) = sin t i− cos t j + 2tk and r(0) = i + j + 2k.

Solution: We have

r(t) =

∫

r′(t) dt = − cos t i− sin t j + t2 k + C = 〈− cos t,− sin t, t2〉 + 〈a, b, c〉,

and since r(0) = 〈1, 1, 2〉 at t = 0, we have

〈1, 1, 2〉 = 〈− cos 0,− sin 0, 02〉 + 〈a, b, c〉 = 〈−1, 0, 0〉+ 〈a, b, c〉

therefore

〈a, b, c〉 = 〈2, 1, 2〉

therefore

r(t) = 〈− cos t,− sin t, t2〉 + 〈2, 1, 2〉 = (2 − cos t) i + (1 − sin t) j + (2 + t2)k.



Question 5. [Sec. 14.3, # 2] Find the length of the curve

r(t) =
〈

t2, sin t − t cos t, cost + t sin t
〉

, 0 ≤ t ≤ π.

Solution: We have

r′(t) = 〈2t, cos t − cos t + t sin t,− sin t + sin t + t cos t〉 = 〈2t, t sin t, t cos t〉

so that

|r′(t)| =
√

4t2 + t2 sin2 t + t2 cos2 t =

√

4t2 + t2(sin2 t + cos2 t) =
√

5t2 =
√

5 t

since t ∈ [0, π]. Therefore, the length of the curve is

L =

∫ π

0

|r′(t)| dt =

∫ π

0

√
5 t dt =

√
5

t2

2

∣

∣

∣

∣

π

0

=

√
5

2
π2.

Question 6. [Sec. 14.3, # 14] Given the curve

r(t) =
〈

t2, sin t − t cos t, cost + t sin t
〉

, t > 0

(a) Find the unit tangent and unit normal vectors T(t) and N(t).

(b) Use the formula

κ(t) =
|T′(t)|
|r′(t)|

to find the curvature.

Solution:

(a) From the previous problem, r′(t) = 〈2t, t sin t, t cos t〉 and |r′(t)| =
√

5 t, so that

T(t) =
r′(t)

|r′(t)| =
〈2t, t sin t, t cos t〉√

5t
=

〈

2√
5
,

1√
5

sin t,
1√
5

cos t

〉

,

and so

T′(t) =

〈

0,
1√
5

cos t,− 1√
5

sin t

〉

which implies

|T′(t)| =

√

1

5
(cos2 t + sin2 t) =

1√
5
,

and therefore

N(t) =
T′(t)

|T′(t)| =
〈0, 1√

5
cos t,− 1√

5
sin t〉

1/
√

5
= 〈0, cos t,− sin t〉.

(b) The curvature is

κ(t) =
|T′(t)|
|r′(t)| =

1/
√

5√
5 t

=
1

5t
.



Question 7. [Sec. 14.3, # 18] Given the curve

r(t) = t i + t j + (1 + t2)k

use the formula

κ(t) =
|r′(t) × r′′(t)|

|r′(t)|3
to find the curvature.

Solution: We have
r(t) = 〈t, t, 1 + t2〉,

and
r′(t) = 〈1, 1, 2t〉,

and
r′′(t) = 〈0, 0, 2〉.

Therefore

r′(t) × r′′(t) =

∣

∣

∣

∣

∣

∣

i j k
1 1 2t
0 0 2

∣

∣

∣

∣

∣

∣

= 2i− 2j = 〈2,−2, 0〉

and so
|r′ × r′′| =

√
4 + 4 = 2

√
2,

and since
|r′| =

√

1 + 1 + 4t2 =
√

2 + 4t2 =
√

2
√

1 + 2t2

then

κ(t) =
|r′(t) × r′′(t)|

|r′(t)|3 =
2
√

2

(
√

2)3(1 + 2t2)
3

2

=
1

(1 + 2t2)
3

2

.

Question 8. [Sec. 14.3, # 26] Given the curve y = ln x, at what point does the curve have maximum
curvature? What happens to the curvature as x → ∞ ?

Solution: We use κ(x) = |f ′′(x)|/(1 + (f ′(x))2)3/2.

Since y = ln x, then y′ =
1

x
, which implies that y′′ = − 1

x2
for x > 0. Therefore

κ(x) =
| − 1

x2 |
(1 + 1

x2 )
3

2

=
1/x2

(1 + 1

x2 )
3

2

=
1/x2

(x2 + 1)
3

2 /x3
=

x

(1 + x2)
3

2

and so

κ′(x) =
(1 + x2)

3

2 − x · 3

2
(1 + x2)

1

2 (2x)

(1 + x2)3
=

(1 + x2)
1

2 [1 + x2 − 3x2]

(1 + x2)3
=

1 − 2x2

(1 + x2)
5

2

.

The critical point is x = 1/
√

2 (remember the domain of f is x > 0). Then on (0, 1/
√

2), κ′(x) > 0 so κ is
increasing; and on (1/

√
2,∞), κ′(x) < 0 so κ is decreasing. Hence the curvature is a maximum at x = 1/

√
2.

The maximum curvature occurs at (1/
√

2, ln(1/
√

2)). Also,

lim
x→∞

κ(x) = lim
x→∞

1 − 2x2

(1 + x2)
5

2

= lim
x→∞

x2

(

1

x2
− 2

)

(

x2

(

1

x2
+ 1

))
5

2

= lim
x→∞

x2

(

1

x2
− 2

)

x5

(

1

x2
+ 1

)
5

2

= lim
x→∞

1

x2
− 2

x3

(

1

x2
+ 1

)
5

2

= lim
x→∞

−2

x3
= 0.



Question 9. [Sec. 14.3, # 42] Find the equations of the normal plane and the osculating plane of the
curve

x = t, y = t2, z = t3

at the point (1, 1, 1).

Solution: At (1, 1, 1), t = 1. We have r(t) = 〈t, t2, t3〉 and r′(t) = 〈1, 2t, 3t2〉.

The normal plane is determined by the vectors B and N so a normal vector is the unit tangent vector T (or
r′.

Now

T(1) =
r′(1)

|r′(1)| =
〈1, 2, 3〉√
1 + 4 + 9

=
1√
14

〈1, 2, 3〉.

Using 〈1, 2, 3〉 and the point (1, 1, 1), an equation of the normal plane is

x − 1 + 2(y − 1) + 3(z − 1) = 0

which implies x + 2y + 3z = 6.

The osculating plane is determined by the vectors N and T, and we can use for a normal vector

n = B = T ×N.

Now

T(t) =
r′(t)

|r′(t)| =
1√

1 + 4t2 + 9t4
〈1, 2t, 3t2〉

which implies

T′(t) =
1

2
(1 + 4t2 + 9t4)−

3

2 (8t + 36t3) 〈1, 2t, 3t2〉 +
1√

1 + 4t2 + 9t4
〈0, 2, 6t〉,

and this implies that

T′(1) =
1

2

8 + 36

(
√

1 + 4 + 9)3
〈1, 2, 3〉+

1√
1 + 4 + 9

〈0, 2, 6〉 =
1

7
√

14
〈11, 8,−9〉,

and therefore

N(1) =

1

7
√

14
〈11, 8,−9〉

√
121 + 64 + 81

=
〈11, 8,−9〉√

266

For a normal vector use

n = 〈1, 2, 3〉 × 〈11, 8,−9〉 = 〈−42, 42,−14〉 = 14〈3,−3, 1〉,

then the osculating plane has equation

3(x − 1) − 3(y − 1) + (z − 1) = 0,

that is, 3x − 3y + z = 1.



Question 10. [Sec. 15.1, # 16] Find and sketch the domain of the function

f(x, y) =
√

y − x ln(y + x).

Solution: The domain of f is

D = {(x, y) | y ≥ x and y > −x} = {(x, y) | − y < x ≤ y, y > 0}.

The graph of D is

y=−x

x
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Question 11. [Sec. 15.1, # 18] Find and sketch the domain of the function

f(x, y) =
√

x2 + y2 − 1 + ln(4 − x2 − y2).

Solution: For the domain of f we need x2+y2−1 ≥ 0, i.e., x2+y2 ≥ 1 and 4−x2−y2 > 0, i.e., x2+y2 < 4.
So

D = {(x, y) | 1 ≤ x2 + y2 < 4}

4
x

y

1



Question 12. [Sec. 15.1, # 26] Sketch the graph of the function

f(x, y) = 3 − x2 − y2.

Solution: Let z = 3 − x2 − y2. We look at various traces of of f .

z = 0 : x2 + y2 = 3

z = k : x2 + y2 = 3 − k (a family of circles, k ≤ 3)

x = 0 : z − 3 = −y2

x = k : z − 3 + k2 = −y2 (a family of parabolas, opens down)

y = 0 : z − 3 = −x2

y = k : z − 3 + k2 = −x2 (a family of parabolas, opens down)
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3

Question 13. [Sec. 15.1, # 38] Draw a contour map of the function

f(x, y) = x2 − y2

showing several level curves.

Solution: The level curves are x2 − y2 = k s.t.

k = 0 : x2 − y2 = 0 =⇒ y2 = x2 =⇒ y = ±x

k > 0 :
x2

k
− y2

k
= 1 (a family of hyperbolas, x-int: x = ±

√
k)

k < 0 :
x2

k
− y2

k
= 1 (a family of hyperbolas, y-int: y = ±

√
k)

y=−x

x

y

k>0

k<0

k>0

k<0

y=x


