MATH 214 (R1) Winter 2008

Intermediate Calculus I

Solutions to Problem Set \#9

Completion Date: Friday March 28, 2008

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [Sec. 14.2, \# 8] Given the vector equation

$$
\mathbf{r}(t)=2 \sin t \mathbf{i}+3 \cos t \mathbf{j}
$$

(a) sketch the plane curve with the given vector equation,
(b) find $\mathbf{r}^{\prime}(t)$,
(c) sketch the position vector $\mathbf{r}(t)$ and the tangent vector $\mathbf{r}^{\prime}(t)$ for the value $t=\pi / 3$.

Solution:

(a) $x=2 \sin t, y=3 \cos t$ implies $\sin t=x / 2$, and $\cos t=y / 3$, so that

$$
\sin ^{2} t+\cos ^{2} t=\frac{x^{2}}{4}+\frac{y^{2}}{9}=1
$$

The curve is an ellipse with center at $(0,0)$ and major axis along the y-axis.

(b) $\mathbf{r}^{\prime}(t)=\langle 2 \cos t,-3 \sin t\rangle$.
(c) See the graph above.

Question 2. [Sec. 14.2, \# 26] Find parametric equations for the tangent line to the curve whose parametric equations are

$$
x=\ln t, \quad y=2 \sqrt{t}, \quad z=t^{2}, \quad 0<t<\infty
$$

at the point $(0,2,1)$.
Solutions: We have $\mathbf{r}(t)=\left\langle\ln t, 2 \sqrt{t}, t^{2}\right\rangle$, so that $\mathbf{r}^{\prime}(t)=\langle 1 / t, 1 / \sqrt{t}, 2 t\rangle$.
At $(0,2,1), t=1$, so that $\mathbf{r}^{\prime}(1)=\langle 1,1,2\rangle$ is a direction vector for the tangent line whose parametric equations are

$$
x=t, \quad y=2+t, \quad z=1+2 t
$$

Question 3. [Sec. 14.2, \# 30] Given the curve

$$
\mathbf{r}(t)=\langle\sin \pi t, 2 \sin \pi t, \cos \pi t\rangle
$$

(a) Find the point of intersection of the tangent lines to the curve at the points where $t=0$ and $t=0.5$.
(b) Illustrate by graphing the curve and both tangent lines.

Solution:

(a) We first find $\mathbf{r}^{\prime}(t)=\langle\pi \cos \pi t, 2 \pi \cos \pi t,-\pi \sin \pi t\rangle$. We can use this for direction vectors for the 2 tangent lines.
Let $t=0 . \mathbf{r}^{\prime}(0)=\langle\pi, 2 \pi, 0\rangle$. The point on the curve is $(0,0,1)$, and the tangent line is

$$
x=\pi t, \quad y=2 \pi t, \quad z=1
$$

Let $t=0.5 . \mathbf{r}^{\prime}(1 / 2)=\langle 0,0,-\pi\rangle$. The point on the curve is $(1,2,0)$, and the tangent line is

$$
x=1, \quad y=2, \quad z=-\pi s
$$

At the point of intersection of these tangent lines: $x: \pi t=1$ implies $t=1 / \pi$ and $z:-\pi s=1$ implies $s=-1 / \pi$, so that the point of intersection is $(1,2,1)$.
(b) The graph and the two tangent lines are sketched below.

Question 4. [Sec. 14.2, \# 40] Find $\mathbf{r}(t)$ if

$$
\mathbf{r}^{\prime}(t)=\sin t \mathbf{i}-\cos t \mathbf{j}+2 t \mathbf{k} \quad \text { and } \quad \mathbf{r}(0)=\mathbf{i}+\mathbf{j}+2 \mathbf{k}
$$

Solution: We have

$$
\mathbf{r}(t)=\int \mathbf{r}^{\prime}(t) d t=-\cos t \mathbf{i}-\sin t \mathbf{j}+t^{2} \mathbf{k}+\mathbf{C}=\left\langle-\cos t,-\sin t, t^{2}\right\rangle+\langle a, b, c\rangle
$$

and since $\mathbf{r}(0)=\langle 1,1,2\rangle$ at $t=0$, we have

$$
\langle 1,1,2\rangle=\left\langle-\cos 0,-\sin 0,0^{2}\right\rangle+\langle a, b, c\rangle=\langle-1,0,0\rangle+\langle a, b, c\rangle
$$

therefore

$$
\langle a, b, c\rangle=\langle 2,1,2\rangle
$$

therefore

$$
\mathbf{r}(t)=\left\langle-\cos t,-\sin t, t^{2}\right\rangle+\langle 2,1,2\rangle=(2-\cos t) \mathbf{i}+(1-\sin t) \mathbf{j}+\left(2+t^{2}\right) \mathbf{k}
$$

Question 5. [Sec. 14.3, \# 2] Find the length of the curve

$$
\mathbf{r}(t)=\left\langle t^{2}, \sin t-t \cos t, \cos t+t \sin t\right\rangle, \quad 0 \leq t \leq \pi
$$

Solution: We have

$$
\mathbf{r}^{\prime}(t)=\langle 2 t, \cos t-\cos t+t \sin t,-\sin t+\sin t+t \cos t\rangle=\langle 2 t, t \sin t, t \cos t\rangle
$$

so that

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{4 t^{2}+t^{2} \sin ^{2} t+t^{2} \cos ^{2} t}=\sqrt{4 t^{2}+t^{2}\left(\sin ^{2} t+\cos ^{2} t\right)}=\sqrt{5 t^{2}}=\sqrt{5} t
$$

since $t \in[0, \pi]$. Therefore, the length of the curve is

$$
L=\int_{0}^{\pi}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{\pi} \sqrt{5} t d t=\left.\sqrt{5} \frac{t^{2}}{2}\right|_{0} ^{\pi}=\frac{\sqrt{5}}{2} \pi^{2}
$$

Question 6. [Sec. 14.3, \# 14] Given the curve

$$
\mathbf{r}(t)=\left\langle t^{2}, \sin t-t \cos t, \cos t+t \sin t\right\rangle, \quad t>0
$$

(a) Find the unit tangent and unit normal vectors $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
(b) Use the formula

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

to find the curvature.

Solution:

(a) From the previous problem, $\mathbf{r}^{\prime}(t)=\langle 2 t, t \sin t, t \cos t\rangle$ and $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{5} t$, so that

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\langle 2 t, t \sin t, t \cos t\rangle}{\sqrt{5} t}=\left\langle\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \sin t, \frac{1}{\sqrt{5}} \cos t\right\rangle
$$

and so

$$
\mathbf{T}^{\prime}(t)=\left\langle 0, \frac{1}{\sqrt{5}} \cos t,-\frac{1}{\sqrt{5}} \sin t\right\rangle
$$

which implies

$$
\left|\mathbf{T}^{\prime}(t)\right|=\sqrt{\frac{1}{5}\left(\cos ^{2} t+\sin ^{2} t\right)}=\frac{1}{\sqrt{5}}
$$

and therefore

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}=\frac{\left\langle 0, \frac{1}{\sqrt{5}} \cos t,-\frac{1}{\sqrt{5}} \sin t\right\rangle}{1 / \sqrt{5}}=\langle 0, \cos t,-\sin t\rangle
$$

(b) The curvature is

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{1 / \sqrt{5}}{\sqrt{5} t}=\frac{1}{5 t}
$$

Question 7. [Sec. 14.3, \# 18] Given the curve

$$
\mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+\left(1+t^{2}\right) \mathbf{k}
$$

use the formula

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
$$

to find the curvature.
Solution: We have

$$
\mathbf{r}(t)=\left\langle t, t, 1+t^{2}\right\rangle
$$

and

$$
\mathbf{r}^{\prime}(t)=\langle 1,1,2 t\rangle
$$

and

$$
\mathbf{r}^{\prime \prime}(t)=\langle 0,0,2\rangle
$$

Therefore

$$
\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 2 t \\
0 & 0 & 2
\end{array}\right|=2 \mathbf{i}-2 \mathbf{j}=\langle 2,-2,0\rangle
$$

and so

$$
\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|=\sqrt{4+4}=2 \sqrt{2}
$$

and since

$$
\left|\mathbf{r}^{\prime}\right|=\sqrt{1+1+4 t^{2}}=\sqrt{2+4 t^{2}}=\sqrt{2} \sqrt{1+2 t^{2}}
$$

then

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}=\frac{2 \sqrt{2}}{(\sqrt{2})^{3}\left(1+2 t^{2}\right)^{\frac{3}{2}}}=\frac{1}{\left(1+2 t^{2}\right)^{\frac{3}{2}}}
$$

Question 8. [Sec. 14.3, \# 26] Given the curve $y=\ln x$, at what point does the curve have maximum curvature? What happens to the curvature as $x \rightarrow \infty$?

Solution: We use $\kappa(x)=\left|f^{\prime \prime}(x)\right| /\left(1+\left(f^{\prime}(x)\right)^{2}\right)^{3 / 2}$.
Since $y=\ln x$, then $y^{\prime}=\frac{1}{x}$, which implies that $y^{\prime \prime}=-\frac{1}{x^{2}}$ for $x>0$. Therefore

$$
\kappa(x)=\frac{\left|-\frac{1}{x^{2}}\right|}{\left(1+\frac{1}{x^{2}}\right)^{\frac{3}{2}}}=\frac{1 / x^{2}}{\left(1+\frac{1}{x^{2}}\right)^{\frac{3}{2}}}=\frac{1 / x^{2}}{\left(x^{2}+1\right)^{\frac{3}{2}} / x^{3}}=\frac{x}{\left(1+x^{2}\right)^{\frac{3}{2}}}
$$

and so

$$
\kappa^{\prime}(x)=\frac{\left(1+x^{2}\right)^{\frac{3}{2}}-x \cdot \frac{3}{2}\left(1+x^{2}\right)^{\frac{1}{2}}(2 x)}{\left(1+x^{2}\right)^{3}}=\frac{\left(1+x^{2}\right)^{\frac{1}{2}}\left[1+x^{2}-3 x^{2}\right]}{\left(1+x^{2}\right)^{3}}=\frac{1-2 x^{2}}{\left(1+x^{2}\right)^{\frac{5}{2}}} .
$$

The critical point is $x=1 / \sqrt{2}$ (remember the domain of f is $x>0$). Then on $(0,1 / \sqrt{2}), \kappa^{\prime}(x)>0$ so κ is increasing; and on $(1 / \sqrt{2}, \infty), \kappa^{\prime}(x)<0$ so κ is decreasing. Hence the curvature is a maximum at $x=1 / \sqrt{2}$. The maximum curvature occurs at $(1 / \sqrt{2}, \ln (1 / \sqrt{2}))$. Also,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \kappa(x) & =\lim _{x \rightarrow \infty} \frac{1-2 x^{2}}{\left(1+x^{2}\right)^{\frac{5}{2}}}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(\frac{1}{x^{2}}-2\right)}{\left(x^{2}\left(\frac{1}{x^{2}}+1\right)\right)^{\frac{5}{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}\left(\frac{1}{x^{2}}-2\right)}{x^{5}\left(\frac{1}{x^{2}}+1\right)^{\frac{5}{2}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}-2}{x^{3}\left(\frac{1}{x^{2}}+1\right)^{\frac{5}{2}}}=\lim _{x \rightarrow \infty} \frac{-2}{x^{3}}=0 .
\end{aligned}
$$

Question 9. [Sec. 14.3, \# 42] Find the equations of the normal plane and the osculating plane of the curve

$$
x=t, \quad y=t^{2}, \quad z=t^{3}
$$

at the point $(1,1,1)$.
Solution: At $(1,1,1), t=1$. We have $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 1,2 t, 3 t^{2}\right\rangle$.
The normal plane is determined by the vectors \mathbf{B} and \mathbf{N} so a normal vector is the unit tangent vector \mathbf{T} (or \mathbf{r}^{\prime} 。

Now

$$
\mathbf{T}(1)=\frac{\mathbf{r}^{\prime}(1)}{\left|\mathbf{r}^{\prime}(1)\right|}=\frac{\langle 1,2,3\rangle}{\sqrt{1+4+9}}=\frac{1}{\sqrt{14}}\langle 1,2,3\rangle
$$

Using $\langle 1,2,3\rangle$ and the point $(1,1,1)$, an equation of the normal plane is

$$
x-1+2(y-1)+3(z-1)=0
$$

which implies $x+2 y+3 z=6$.
The osculating plane is determined by the vectors \mathbf{N} and \mathbf{T}, and we can use for a normal vector

$$
\mathbf{n}=\mathbf{B}=\mathbf{T} \times \mathbf{N}
$$

Now

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{1}{\sqrt{1+4 t^{2}+9 t^{4}}}\left\langle 1,2 t, 3 t^{2}\right\rangle
$$

which implies

$$
\mathbf{T}^{\prime}(t)=\frac{1}{2}\left(1+4 t^{2}+9 t^{4}\right)^{-\frac{3}{2}}\left(8 t+36 t^{3}\right)\left\langle 1,2 t, 3 t^{2}\right\rangle+\frac{1}{\sqrt{1+4 t^{2}+9 t^{4}}}\langle 0,2,6 t\rangle
$$

and this implies that

$$
\mathbf{T}^{\prime}(1)=\frac{1}{2} \frac{8+36}{(\sqrt{1+4+9})^{3}}\langle 1,2,3\rangle+\frac{1}{\sqrt{1+4+9}}\langle 0,2,6\rangle=\frac{1}{7 \sqrt{14}}\langle 11,8,-9\rangle,
$$

and therefore

$$
\mathbf{N}(1)=\frac{\frac{1}{7 \sqrt{14}}\langle 11,8,-9\rangle}{\sqrt{121+64+81}}=\frac{\langle 11,8,-9\rangle}{\sqrt{266}}
$$

For a normal vector use

$$
\mathbf{n}=\langle 1,2,3\rangle \times\langle 11,8,-9\rangle=\langle-42,42,-14\rangle=14\langle 3,-3,1\rangle
$$

then the osculating plane has equation

$$
3(x-1)-3(y-1)+(z-1)=0
$$

that is, $3 x-3 y+z=1$.

Question 10. [Sec. 15.1, \# 16] Find and sketch the domain of the function

$$
f(x, y)=\sqrt{y-x} \ln (y+x)
$$

Solution: The domain of f is

$$
D=\{(x, y) \mid y \geq x \text { and } y>-x\}=\{(x, y) \mid-y<x \leq y, y>0\}
$$

The graph of D is

Question 11. [Sec. 15.1, \# 18] Find and sketch the domain of the function

$$
f(x, y)=\sqrt{x^{2}+y^{2}-1}+\ln \left(4-x^{2}-y^{2}\right)
$$

Solution: For the domain of f we need $x^{2}+y^{2}-1 \geq 0$, i.e., $x^{2}+y^{2} \geq 1$ and $4-x^{2}-y^{2}>0$, i.e., $x^{2}+y^{2}<4$. So

$$
D=\left\{(x, y) \mid 1 \leq x^{2}+y^{2}<4\right\}
$$

Question 12. [Sec. 15.1, \# 26] Sketch the graph of the function

$$
f(x, y)=3-x^{2}-y^{2}
$$

Solution: Let $z=3-x^{2}-y^{2}$. We look at various traces of of f.

$$
\begin{array}{ll}
z=0: & x^{2}+y^{2}=3 \\
z=k: & x^{2}+y^{2}=3-k \quad(\text { a family of circles, } k \leq 3) \\
x=0: & z-3=-y^{2} \\
x=k: & z-3+k^{2}=-y^{2} \quad(\text { a family of parabolas, opens down }) \\
y=0: & z-3=-x^{2} \\
y=k: & z-3+k^{2}=-x^{2} \quad \text { (a family of parabolas, opens down) }
\end{array}
$$

Question 13. [Sec. 15.1, \# 38] Draw a contour map of the function

$$
f(x, y)=x^{2}-y^{2}
$$

showing several level curves.
Solution: The level curves are $x^{2}-y^{2}=k$ s.t.

$$
\begin{array}{ll}
k=0: & x^{2}-y^{2}=0 \Longrightarrow y^{2}=x^{2} \Longrightarrow y= \pm x \\
k>0: & \frac{x^{2}}{k}-\frac{y^{2}}{k}=1 \quad(\text { a family of hyperbolas, } x \text {-int: } x= \pm \sqrt{k}) \\
k<0: & \frac{x^{2}}{k}-\frac{y^{2}}{k}=1 \quad(\text { a family of hyperbolas, } y \text {-int: } y= \pm \sqrt{k})
\end{array}
$$

