

MATH 214 (R1) Winter 2008
Intermediate Calculus I

Solutions to Problem Set #7

Completion Date: Friday March 7, 2008

Department of Mathematical and Statistical Sciences
University of Alberta

Question 1. [Sec. 13.1, # 8] Find the lengths of the sides of the triangle with vertices $A(1, 2, -3)$, $B(3, 4, -2)$, and $C(3, -2, 1)$. Is $\triangle ABC$ a right triangle? Is it an isosceles triangle?

SOLUTION: Let $\mathbf{a} = \overrightarrow{AB} = \langle 2, 2, 1 \rangle$, $\mathbf{b} = \overrightarrow{BC} = \langle 0, -6, 3 \rangle$, $\mathbf{c} = \overrightarrow{AC} = \langle 2, -4, 4 \rangle$, then

$$|\mathbf{a}| = \sqrt{4+4+1} = 3, \quad |\mathbf{b}| = \sqrt{36+9} = 3\sqrt{5}, \quad |\mathbf{c}| = \sqrt{4+16+16} = 6.$$

Therefore, $\triangle ABC$ is not an isosceles triangle; however, since

$$|\mathbf{a}|^2 + |\mathbf{c}|^2 = 9 + 36 = 45 = |\mathbf{b}|^2,$$

by the Pythagorean Theorem, $\triangle ABC$ is a right triangle.

Question 2. [Sec. 13.1, # 18] Show that the equation

$$4x^2 + 4y^2 + 4z^2 - 8x + 16y = 1$$

represents a sphere, and find its center and radius.

SOLUTION: We complete the square,

$$4x^2 + 4y^2 + 4z^2 - 8x + 16y = 1,$$

so that

$$4(x^2 - 2x + 1) + 4(y^2 + 4y + 4) + 4z^2 = 1 + 4 + 16,$$

that is,

$$4(x - 1)^2 + 4(y + 2)^2 + 4z^2 = 21,$$

and

$$(x - 1)^2 + (y + 2)^2 + z^2 = \frac{21}{4},$$

so the equation represents a sphere with center $(1, -2, 0)$ and radius $\sqrt{21}/2$.

Question 3. [Sec. 13.1, # 20] Find an equation of a sphere if one of its diameters has endpoints $(2, 1, 4)$ and $(4, 3, 10)$.

SOLUTION: The length of the diameter is

$$\sqrt{(2-4)^2 + (1-3)^2 + (4-10)^2} = \sqrt{4+4+36} = \sqrt{44},$$

so the radius is $\sqrt{44}/2 = \sqrt{11}$. The center is the midpoint of $(2, 1, 4)$ and $(4, 3, 10)$, and

$$(h, k, l) = \left(\frac{2+4}{2}, \frac{1+3}{2}, \frac{4+10}{2} \right) = (3, 2, 7)$$

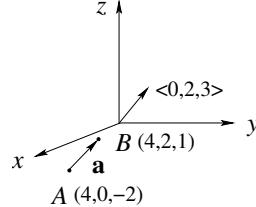
and the equation of the sphere is $(x - 3)^2 + (y - 2)^2 + (z - 7)^2 = 11$.

Question 4. [Sec. 13.1, # 32] Describe in words the region of \mathbb{R}^3 represented by the equation $x^2 + y^2 = 1$.

SOLUTION: All points on the circular cylinder with radius 1 and axis the z -axis, since the value of z is arbitrary.

Question 5. [Sec. 13.2, # 12] Find a vector \mathbf{a} with representation given by the directed line segment \overrightarrow{AB} from $A(4, 0, -2)$ to $B(4, 2, 1)$. Draw \overrightarrow{AB} and the equivalent representation starting at the origin.

SOLUTION: $\mathbf{a} = \overrightarrow{AB} = \langle 0, 2, 3 \rangle$.



Question 6. [Sec. 13.2, # 22] Let $\mathbf{a} = 3\mathbf{i} - 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} - \mathbf{j} + \mathbf{k}$. Find $|\mathbf{a}|$, $\mathbf{a} + \mathbf{b}$, $\mathbf{a} - \mathbf{b}$, $2\mathbf{a}$, and $3\mathbf{a} + 4\mathbf{b}$.

SOLUTION: Let $\mathbf{a} = \langle 3, 0, -2 \rangle$, $\mathbf{b} = \langle 1, -1, 1 \rangle$, then

$$\begin{aligned} |\mathbf{a}| &= \sqrt{9+4} = \sqrt{13}, \\ \mathbf{a} + \mathbf{b} &= \langle 3+1, 0-1, -2+1 \rangle = \langle 4, -1, -1 \rangle = 4\mathbf{i} - \mathbf{j} - \mathbf{k}, \\ \mathbf{a} - \mathbf{b} &= \langle 3-1, 0+1, -2-1 \rangle = \langle 2, 1, -3 \rangle = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}, \\ 2\mathbf{a} &= 2\langle 3, 0, -2 \rangle = \langle 6, 0, -4 \rangle = 6\mathbf{i} - 4\mathbf{k}, \\ 3\mathbf{a} + 4\mathbf{b} &= 3\langle 3, 0, -2 \rangle + 4\langle 1, -1, 1 \rangle = \langle 9, 0, -6 \rangle + \langle 4, -4, 4 \rangle \\ &= \langle 13, -4, -2 \rangle = 13\mathbf{i} - 4\mathbf{j} - 2\mathbf{k}. \end{aligned}$$

Question 7. [Sec. 13.2, # 26] Find a vector that has the same direction as $\langle -2, 4, 2 \rangle$ but has length 6.

SOLUTION: The unit vector in the same direction as $\mathbf{a} = \langle -2, 4, 2 \rangle$ is

$$\frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\langle -2, 4, 2 \rangle}{\sqrt{4+16+4}} = \frac{\langle -2, 4, 2 \rangle}{\sqrt{24}} = \frac{1}{2\sqrt{6}} \langle -2, 4, 2 \rangle,$$

and to have length 6 we need

$$\frac{6\mathbf{a}}{|\mathbf{a}|} = \frac{6}{2\sqrt{6}} \langle -2, 4, 2 \rangle = \frac{3}{\sqrt{6}} \langle -2, 4, 2 \rangle = \langle -\sqrt{6}, 2\sqrt{6}, \sqrt{6} \rangle.$$

Question 8. [Sec. 13.3, # 18] Find the angle between the vectors

$$\mathbf{a} = \langle 6, -3, 2 \rangle \quad \text{and} \quad \mathbf{b} = \langle 2, 1, -2 \rangle.$$

(First find an exact expression and then approximate to the nearest degree.)

SOLUTION: We have

$$\begin{aligned} \cos \theta &= \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{12 - 3 - 4}{\sqrt{36+9+4} \sqrt{4+1+4}} = \frac{5}{\sqrt{49} \sqrt{9}} = \frac{5}{7(3)} = \frac{5}{21}, \\ \theta &= \cos^{-1} \left(\frac{5}{21} \right) \approx 76^\circ. \end{aligned}$$

Question 9. [Sec. 13.3, # 24] Determine whether the given vectors are orthogonal, parallel, or neither.

(a) $\mathbf{u} = \langle -3, 9, 6 \rangle$, $\mathbf{v} = \langle 4, -12, -8 \rangle$

(b) $\mathbf{u} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$, $\mathbf{v} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$

(c) $\mathbf{u} = \langle a, b, c \rangle$, $\mathbf{v} = \langle -b, a, 0 \rangle$

SOLUTION:

(a) Observe that $\mathbf{u} = 3\langle -1, 3, 2 \rangle$ and $\mathbf{v} = -4\langle -1, 3, 2 \rangle$, so that $\mathbf{u} = -4/3\mathbf{v}$. Hence the vectors are parallel.

(b) $\mathbf{u} = \langle 1, -1, 2 \rangle$ and $\mathbf{v} = \langle 2, -1, 1 \rangle$, so that $\mathbf{u} \cdot \mathbf{v} = 2 + 1 + 2 = 5 \neq 0$, and the vectors are not orthogonal. There is no scalar t that satisfies $\mathbf{u} = t\mathbf{v}$, and they are not parallel.

(c) $\mathbf{u} \cdot \mathbf{v} = -ab + ba + 0 = 0$, and the vectors are orthogonal (so they are not parallel).

Question 10. [Sec. 13.3, # 26] For what values of b are the vectors $\langle -6, b, 2 \rangle$ and $\langle b, b^2, b \rangle$ orthogonal?

SOLUTION: They are orthogonal if $\langle -6, b, 2 \rangle \cdot \langle b, b^2, b \rangle = 0$, that is, if and only if $-6b + b^3 + 2b = 0$, if and only if $b(b^2 - 4) = 0$, if and only if $b = 0$ or ± 2 .

Question 11. [Sec. 13.3, # 38] Find the scalar and vector projections of \mathbf{b} onto \mathbf{a} if

$$\mathbf{a} = \langle -1, -2, 2 \rangle \quad \text{and} \quad \mathbf{b} = \langle 3, 3, 4 \rangle.$$

SOLUTION: The scalar projection of \mathbf{b} onto \mathbf{a} is

$$\text{comp}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} = \frac{-3 - 6 + 8}{\sqrt{1 + 4 + 4}} = \frac{-1}{3}.$$

The vector projection of \mathbf{b} onto \mathbf{a} is

$$\text{proj}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a} = \left(-\frac{1}{3} \right) \frac{\langle -1, -2, 2 \rangle}{3} = -\frac{1}{9} \langle -1, -2, 2 \rangle = \left\langle \frac{1}{9}, \frac{2}{9}, -\frac{2}{9} \right\rangle.$$