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Question 1. [Sec. 11.3, # 20] Identify the curve

r = tan θ sec θ

by finding a Cartesian equation for the curve.

Solution: Since x = r cos θ, then cos θ = x/r and tan θ = y/x, so that

r = tan θ sec θ =
y

x
·
r

x
=

y r

x2
,

and y = x2, that is, the curve is a parabola opening upward with vertex (0, 0).

Question 2. [Sec. 11.3, # 26] Find the polar equation for the curve represented by the Cartesian
equation

x2 − y2 = 1.

Solution: Since x = r cos θ and y = r sin θ, then

x2 − y2 = r2 cos2 θ − r2 sin2 θ = r2(cos2 θ − sin2 θ) = r2 cos 2θ.

Hence the polar equation is
r2 cos 2θ = 1 or r2 = sec 2θ.

Question 3. [Sec. 11.3, # 34] Sketch the curve with polar equation

r = 1 − 3 cos θ.

Solution: The curve is sketched below.
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Question 4. [Sec. 11.3, # 38] Sketch the curve with polar equation

r = 2 cos3θ.

Solution: Using symmetry about the polar axis, we have
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Question 5. [Sec. 11.3, # 44] Sketch the curve with polar equation

r2θ = 1.

Solution: The graph is sketched below.
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Question 6. [Sec. 11.3, # 60] Find the slope of the tangent line to the polar curve

r = sin 3θ

at the point θ =
π

6
.

Solution: The slope of the tangent line is

dy

dx
=

dr

dθ
sin θ + r cos θ

dr

dθ
cos θ − r sin θ

=
3 cos 3θ sin θ + sin 3θ cos θ

3 cos 3θ cos θ − sin 3θ sin θ
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Question 7. [Sec. 11.4, # 18] Find the area of the region enclosed by one loop of the curve

r = 4 sin 3θ.

Solution: The curve is sketched below.
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Using symmetry we have
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Question 8. [Sec. 11.4, # 24] Find the area of the region that lies inside the curve r = 1 − sin θ and
outside the curve r = 1.

Solution: The curve is sketched below.
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Note that the points of intersection are θ = 0, π, 2π (set 1 − sin θ = 1).

Using symmetry again, we have
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Question 9. [Sec. 11.4, # 30] Find the area of the region that lies inside both of the curves r = sin 2θ
and r = sin θ.

Solution: The graph is sketched below.
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Question 10. [Sec. 11.4, # 32] Find the area of the region that lies inside both of the curves r2 = 2 sin 2θ
and r = 1.

Solution: The curves are sketched below.
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Using symmetry,
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Question 11. [Sec. 11.4, # 40] Find all points of intersection of the curves r = cos 3θ and r = sin 3θ.

Solution: The curves are sketched below.
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Since cos 3θ = sin 3θ implies that tan 3θ = 1, then 3θ = π/4 + nπ, and thus θ = π/12 + (nπ)/3, and the
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Question 12. [Sec. 11.4, # 46] Find the exact length of the of the polar curve

r = e2θ, 0 ≤ θ ≤ 2π.

Solution: The length of the curve is given by
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