MATH 214 (R1) Winter 2008

Intermediate Calculus I

Solutions to Problem Set \#5

Completion Date: Friday February 15, 2008
Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [Sec. 11.1, \# 10] Given the parametric equations $x=t^{2}, y=t^{3}$
(a) Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases.
(b) Eliminate the parameter to find a Cartesian equation of the curve.

Solution:

(a) Plotting points for integer values of t with $-3 \leq t \leq 3$, we have

t	-3	-2	-1	0	1	2	3
x	9	4	1	0	1	4	9
y	-27	-8	-1	0	1	8	27

and the curve is plotted below.

(b) Solving for the parameter t in the first equation, we have $t= \pm \sqrt{x}$, so that $y= \pm x^{3 / 2}, x \geq 0, y \in \mathbb{R}$. The Cartesian equation of the curve is given by

$$
x=y^{2 / 3}, x \geq 0, y \in \mathbb{R}
$$

Question 2. [Sec. 11.1, \# 12] Given the parametric equations

$$
x=4 \cos \theta, \quad y=5 \sin \theta, \quad-\pi / 2 \leq \theta \leq \pi / 2
$$

(a) Eliminate the parameter to find a Cartesian equation of the curve.
(b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

Solution:

(a) Eliminating the parameter, since $\cos ^{2} \theta+\sin ^{2} \theta=1$, we have

$$
(x / 4)^{2}+(y / 5)^{2}=1
$$

that is,

$$
\frac{x^{2}}{16}+\frac{y^{2}}{25}=1
$$

which is the equation of an ellipse with the x-intercepts $x= \pm 4$, the y-intercepts $y= \pm 5$. However, since $-\pi / 2 \leq \theta \leq \pi / 2$, we have $0 \leq \cos \theta \leq 1$ so the graph consists of only the portion on the right side of the y-axis.
(b) The curve is plotted below.

Question 3. [Sec. 11.1, \# 16] Given the parametric equations

$$
x=\ln t, \quad y=\sqrt{t}, \quad t \geq 1
$$

(a) Eliminate the parameter to find a Cartesian equation of the curve.
(b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

Solution:

(a) Eliminating the parameter, we have $x=\ln t$, which implies that $t=e^{x}$, so that $y=\sqrt{e^{x}}=e^{x / 2}, x \geq 0$.
(b) The curve is plotted below.

Question 4. [Sec. 11.1, \# 22] Describe the position of a particle with position (x, y) where

$$
x=\cos ^{2} t, \quad y=\cos t, \quad 0 \leq t \leq 4 \pi
$$

as t varies in the given interval.
Solution: The curve $x=y^{2}$ is a parabola opening to the right with the vertex $(0,0)$. The particle starts at the point $(1,1)(t=0)$. It then moves along the parabola to the point $(0,0)(t=\pi / 2)$ down to $(1,-1)(t=\pi)$, then back to $(0,0)(t=3 \pi / 2)$ and to $(1,1)(t=2 \pi)$. The same motion is repeated from 2π to 4π.

Question 5. [Sec. 11.2, \# 8] Find an equation of the tangent to the curve

$$
x=\tan \theta, \quad y=\sec \theta
$$

at the point $(1, \sqrt{2})$ by 2 methods: (a) without eliminating the parameter and (b) by first eliminating the parameter.

Solution:
(a) Differentiating, we have

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\sec \theta \tan \theta}{\sec ^{2} \theta}=\frac{\tan \theta}{\sec \theta}=\sin \theta
$$

and at $(1, \sqrt{2}), \quad 1=\tan \theta$, so that $\sqrt{2}=\sec \theta$, so that $\theta=\frac{\pi}{4}$ or $\theta=\pi / 4+2 n \pi$, (since $\tan \theta>0$ in quadrant I and III while $\sec \theta>0$ in quad. I and IV). Hence the slope of the tangent at $(1, \sqrt{2})$ is

$$
y^{\prime}\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}
$$

and the equation of the tangent line is

$$
y-\sqrt{2}=\frac{\sqrt{2}}{2}(x-1)
$$

(b) Since $\tan ^{2} \theta+1=\sec ^{2} \theta$ implies $x^{2}+1=y^{2}$, differentiating implicitly we obtain

$$
2 x=2 y y^{\prime}
$$

which implies that

$$
\frac{d y}{d x}=\frac{x}{y}
$$

which in turn implies that

$$
y^{\prime}(1, \sqrt{2})=\frac{1}{\sqrt{2}}
$$

and this gives the same equation as in part (a).

Question 6. [Sec. 11.2, \# 16] Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ if $x=\cos 2 t, y=\cos t, 0<t<\pi$. For which values of t is the curve concave upward?

Solution:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y / d t}{d x / d t}=\frac{-\sin t}{-2 \sin 2 t}=\frac{\sin t}{4 \sin t \cos t}=\frac{1}{4 \cos t}=\frac{1}{4} \sec t \\
\frac{d^{2} y}{d x^{2}} & =\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{d x / d t}=\frac{\frac{1}{4} \sec t \tan t}{-2 \sin 2 t}=-\frac{1}{16} \cdot \frac{\sin t}{\cos ^{2} t \sin t \cos t} \\
& =-\frac{1}{16 \cos ^{3} t}
\end{aligned}
$$

or $\frac{d y}{d x}=-\frac{1}{16} \sec ^{3} t$. The curve is concave upward if $y^{\prime \prime}(x)>0$ on $0<t<\pi$, that is, if

$$
-\frac{1}{16} \sec ^{3} t>0
$$

or equivalently

$$
\sec t<0
$$

or

$$
\cos t<0
$$

so that

$$
t \in(\pi / 2, \pi)
$$

Question 7. [Sec. 11.2, \# 18] Find the points on the curve

$$
x=2 t^{3}+3 t^{2}-12 t, y=2 t^{3}+3 t^{2}+1
$$

where the tangent is horizontal or vertical.
Solution: Differentiating, we have

$$
\frac{d y}{d x}=\frac{6 t^{2}+6 t}{6 t^{2}+6 t-12}=\frac{6 t(t+1)}{6(t+2)(t-1)}=\frac{t(t+1)}{(t+2)(t-1)}
$$

Horizontal tangents occur when $y^{\prime}=0$, that is, when $t=0,-1$. Therefore the points where the tangent line if horizontal are

$$
\begin{aligned}
t=0: & x=0, \quad y=1, \text { that is, }(0,1) \\
t=-1: & x=-2+3+12=13, \quad y=-2+3+1=2, \text { i.e., }(13,2)
\end{aligned}
$$

Vertical tangents occur at $t=-2,1\left(y^{\prime}\right.$ does not exist there $)$, and the points where the tangent line is vertical are

$$
\begin{aligned}
t=-2: & x=-16+12+24=20, \quad y=-16+12+1=-3, \text { that is, }(20,-3), \\
t=1: & x=2+3-12=-7, \quad y=2+3+1=6, \text { that is, }(-7,6)
\end{aligned}
$$

Question 8. [Sec. 11.2, \# 34] Find the area of the region enclosed by the astroid

$$
x=a \cos ^{3} \theta, \quad y=a \sin ^{3} \theta
$$

Solution: The graph of the astroid is

Since $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$, using symmetry we have

$$
\begin{aligned}
A & =4 \int_{0}^{a} y d x=4 \int_{0}^{a}\left(a^{2 / 3}-x^{2 / 3}\right)^{3 / 2} d x \\
& =4 a^{2} \int_{0}^{\pi / 2} 3 \cos ^{2} t \sin ^{4} t d t=12 a^{2} \int_{0}^{\pi / 2} \frac{1}{4}(2 \sin t \cos t)^{2} \sin ^{2} t d t \\
& =\frac{3}{2} a^{2} \int_{0}^{\pi / 2} \sin ^{2} 2 t(1-\cos 2 t) d t \\
& =\frac{3}{2} a^{2}\left[\int_{0}^{\pi / 2} \sin ^{2} 2 t d t-\int_{0}^{\pi / 2} \sin ^{2} 2 t \cos 2 t d t\right] \\
& =\frac{3}{2} a^{2} \int_{0}^{\pi / 2} \sin ^{2} 2 t d t-\left.\frac{3}{2} a^{2} \cdot \frac{\sin ^{3} 2 t}{6}\right|_{0} ^{\pi / 2} \\
& =\frac{3 a^{2}}{2} \int_{0}^{\pi / 2}\left(\frac{1}{2}-\frac{1}{2} \cos 4 t\right) d t \\
& =\frac{3 \pi a^{2}}{8}
\end{aligned}
$$

Question 9. [Sec. 11.2, \# 44] Find the length of the curve

$$
x=e^{t}+e^{-t}, \quad y=5-2 t, \quad 0 \leq t \leq 3
$$

Solution: Differentiating, $d x / d t=e^{t}-e^{-t}$ and $d y / d t=-2$, so that

$$
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\left(e^{t}-e^{-t}\right)^{2}+4=e^{2 t}-2+e^{-2 t}+4=e^{2 t}+2+e^{-2 t}=\left(e^{t}+e^{-t}\right)^{2}
$$

therefore

$$
L=\int_{0}^{3} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{0}^{3}\left(e^{t}+e^{-t}\right) d t=e^{t}-\left.e^{-t}\right|_{0} ^{3}=e^{3}-e^{-3}-1+1=e^{3}-e^{-3}
$$

Question 10. [Sec. 11.2, \# 60] Find the area of the surface obtained by rotating the curve

$$
x=3 t-t^{3}, \quad y=3 t^{2}, \quad 0 \leq t \leq 1
$$

about the x-axis.
Solution: We have

$$
S=2 \pi \int_{a}^{b} y d s=2 \pi \int_{0}^{1} 3 t^{2} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

where

$$
\begin{aligned}
\left(\frac{d x}{d t}\right)^{2} & =\left(3-3 t^{2}\right)^{2}=9-18 t^{2}+9 t^{4} \\
\left(\frac{d y}{d t}\right)^{2} & =(6 t)^{2}=36 t^{2} \\
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} & =9-18 t^{2}+9 t^{4}+36 t^{2}=9+18 t^{2}+9 t^{4}=\left(3+3 t^{2}\right)^{2}
\end{aligned}
$$

therefore

$$
\begin{aligned}
S & =2 \pi \int_{0}^{1} 3 t^{2}\left(3+3 t^{2}\right) d t=2 \pi \int_{0}^{1} 9 t^{2}\left(1+t^{2}\right) d t \\
& =18 \pi \int_{0}^{1}\left(t^{2}+t^{4}\right) d t=18 \pi\left(\frac{t^{3}}{3}+\left.\frac{t^{5}}{5}\right|_{0} ^{1}=18 \pi\left(\frac{1}{3}+\frac{1}{5}\right)=\frac{48 \pi}{5}\right.
\end{aligned}
$$

Question 11. [Sec. 11.2, \# 66] Find the surface area generated by rotating the curve

$$
x=e^{t}-t, \quad y=4 e^{t / 2}, \quad 0 \leq t \leq 1
$$

about the y-axis.
Solution: We have $S=2 \pi \int_{0}^{1} x d s$ where $d s=\sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t$, and

$$
\left(\frac{d x}{d t}\right)^{2}=\left(e^{t}-1\right)^{2}=e^{2 t}-2 e^{t}+1, \quad\left(\frac{d y}{d t}\right)^{2}=\left(2 e^{t / 2}\right)^{2}=4 e^{t}
$$

therefore

$$
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=e^{2 t}-2 e^{t}+1+4 e^{t}=e^{2 t}+2 e^{t}+1=\left(e^{t}+1\right)^{2}
$$

therefore

$$
\begin{aligned}
S & =2 \pi \int_{0}^{1}\left(e^{t}-t\right)\left(e^{t}+1\right) d t \\
& =2 \pi \int_{0}^{1}\left(e^{2 t}+e^{t}-t e^{t}-t\right) d t \\
& =2 \pi\left(\frac{1}{2} e^{2 t}+e^{t}-\left(t e^{t}-e^{t}\right)-\left.\frac{t^{2}}{2}\right|_{0} ^{1}\right. \\
& =2 \pi\left(\frac{1}{2} e^{2}+e-e+e-\frac{1}{2}-\frac{1}{2}-1-1\right)=\pi\left(e^{2}+2 e-6\right)
\end{aligned}
$$

(Here to do $\int t e^{t} d t$, integration by parts was used.)

