
 

MATH 214  (R1)  Winter 2008 
Intermediate Calculus I 

Solutions to Problem Set #4 

Completion Date: Monday February 11, 2008 

Department of Mathematical and Statistical Sciences 
University of Alberta 

Question 1. [Sec. 12.9, # 6] Find a power series representation for the function

f(x) =
1

1 + 9x2

and determine the interval of convergence.

Solution: Start with the geometric series 1/(1− x) =
∞
∑

n=0
xn, |x| < 1, then

1

1 − (−9x2)
=

∞
∑

n=0

(−9x2)n =

∞
∑

n=0

(−1)n9nx2n =

∞
∑

n=0

(−1)n(3x)2n.

The series converges for | − 9x2| < 1, that is, for |x2| < 1/9, or |x| < 1/3, and the interval of convergence is
(−1/3, 1/3).

Question 2 [Sec. 12.9, # 16] Find a power series representation for the function

f(x) =
x2

(1 − 2x)2

and determine the radius of convergence.

Solution: Start with the geometric series 1/(1− x) =
∞
∑

n=0
xn, |x| < 1, then

1

1 − 2x
=

∞
∑

n=0

(2x)n =
∞
∑

n=0

2nxn

converges for |2x| < 1, that is, |x| <
1

2
. Differentiating we obtain

2

(1 − 2x)2
=

∞
∑

n=1

2nnxn−1,

that is,

1

(1 − 2x)2
=

1

2

∞
∑

n=1

2nnxn−1 =

∞
∑

n=1

2n−1nxn−1,

so that
x2

(1 − 2x)2
= x2

∞
∑

n=1

2n−1nxn−1 =

∞
∑

n=1

2n−1nxn+1,

for |x| <
1

2
, and the radius of convergence is R = 1/2.



Question 3. [Sec. 12.9, # 18] Find a power series representation for the function

f(x) = arctan(x/3)

and determine the radius of convergence.

Solution: Recall that
∫

1

9 + x2
dx =

1

3
tan−1 x

3
+ C

Also,

1

9 + x2
=

1

9(1 + (x
3 )2)

=
1

9

∞
∑

n=0

(

−
(x

3

)2
)n

=
1

9

∞
∑

n=0

(−1)n
(x

3

)2n

for | − x2/9| < 1, that is, |x/3| < 1, or |x| < 3. Therefore

tan−1 x

3
= 3 · 1

9

∫ ∞
∑

n=0

(−1)n
(x

3

)2n

dx =
1

3

∞
∑

n=0

(−1)n 1

32n
· x2n+1

2n + 1
+ C =

∞
∑

n=0

(−1)nx2n+1

32n+1(2n + 1)
+ C.

If we let x = 0, then C = 0, so that

tan−1 x

3
=

∞
∑

n=0

(−1)nx2n+1

32n+1(2n + 1)
,

for |x| < 3 and the radius of convergence is R = 3.

Question 4. [Sec. 12.9, # 30] Use a power series representation to approximate the integral

f(x) =

∫ 1/2

0

dx

1 + x6

to six decimal places.

Solution: We use the geometric series again,

∫ 1/2

0

dx

1 + x6
=

∫ 1/2

0

dx

1 − (−x6)
=

∫ 1/2

0

∞
∑

n=0

(−x6)n dx =

∫ 1/2

0

∞
∑

n=0

(−1)nx6n dx

=

∞
∑

n=0

(−1)n x6n+1

6n + 1

∣

∣

∣

∣

1/2

0

=

∞
∑

n=0

(−1)n( 1
2 )6n+1

6n + 1
=

∞
∑

n=0

(−1)n

26n+1(6n + 1)

=
1

2 · 1 − 1

27 · 7 +
1

213 · 13
− · · · .

From the Alternating Series Estimation Theorem, we have |Rn| ≤ bn+1, so that

1

213(13)
≈ 0.0000094 and

1

219(19)
≈ 0.0000001,

and we use the first 3 terms of the alternating series:

∫ 1/2

0

dx

1 + x6
≈ 1

2
− 1

7 · 27
+

1

13 · 213
≈ 0.498893.



Question 5. [Sec. 12.9, # 32] Show that the function

f(x) =
∞
∑

n=0

(−1)n x2n

(2n)!

is a solution to the differential equation
f ′′(x) + f(x) = 0.

Solution: Differentiating,

f ′(x) =
∞
∑

n=1

(−1)n2n

(2n)!
x2n−1 =

∞
∑

n=1

(−1)n

(2n − 1)!
x2n−1,

f ′′(x) =

∞
∑

n=1

(−1)n(2n − 1)

(2n − 1)!
x2n−2 =

∞
∑

n=1

(−1)n

(2n − 2)!
x2n−2,

so that

f ′′(x) + f(x) =

∞
∑

n=1

(−1)n

(2n − 2)!
x2n−2 +

∞
∑

n=0

(−1)n

(2n)!
x2n

=

∞
∑

k=0

(−1)k+1x2k

(2k)!
+

∞
∑

k=0

(−1)kx2k

(2k)!
(2k = 2n− 2 in the 1st sum)

= −
∞
∑

k=0

(−1)kx2k

(2k)!
+

∞
∑

k=0

(−1)kx2k

(2k)!
= 0.

Question 6. [Sec. 12.10, # 4] Find the Maclaurin series for

f(x) = sin 2x

using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do not show that
Rn(x) → 0.] Also find the associated radius of convergence.

Solution: We need f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 + · · · .

f(x) = sin 2x, f(0) = 0

f ′(x) = 2 cos 2x, f ′(0) = 2

f ′′(x) = −4 sin2x, f ′′(0) = 0

f ′′′(x) = −8 cos2x, f ′′′(0) = −8 = −23

f (4)(x) = 16 sin2x, f (4)(0) = 0

f (5)(x) = 32 cos2x, f (5)(0) = 32 = 25, etc,

therefore f (n)(0) = 0 if n is even and f (2n+1)(0) = (−1)n22n+1, and

f(x) =

∞
∑

n=0

(−1)n22n+1

(2n + 1)!
x2n+1 = 2x − 8

3!
x3 +

32

5!
x5 − · · · .

Also,
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=

∣

∣

∣

∣

(−1)n+122(n+1)+1x2(n+1)+1

(2(n + 1) + 1)!
· (2n + 1)!

(−1)n22n+1x2n+1

∣

∣

∣

∣

=
22x2

(2n + 3)(2n + 2)
,

so that

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

22x2

(2n + 3)(2n + 2)
= 0 < 1

for all x ∈ R, and by the Ratio Test R = ∞.



Question 7. [Sec. 12.10, # 14] Find the Taylor series for

f(x) = ln x

centered at the value a = 2. [Assume that f has a power series expansion. Do not show that Rn(x) → 0.]

Solution: We have

f(x) = ln x f(2) = ln 2

f ′(x) =
1

x
f ′(2) =

1

2

f ′′(x) = − 1

x2
f ′′(2) = − 1

22

f ′′′(x) =
2

x3
f ′′′(2) =

2

23

f (4)(x) = −2 · 3
x4

f (4)(2) = −2 · 3
24

, etc.

and f (n)(2) = (−1)n−1 (n − 1)!
n

for n ≥ 1, so that

f(x) =

∞
∑

n=0

f (n)(2)

n!
(x − 2)n = ln 2 +

∞
∑

n=1

(−1)n−1(n − 1)!

2nn!
(x − 2)n = ln 2 +

∞
∑

n=1

(−1)n−1

n2n
(x − 2)n.

From the Ratio Test
∣

∣

∣

∣

(−1)n(x − 2)n+1

(n + 1)2n+1
· n2n

(−1)n(x − 2)n

∣

∣

∣

∣

=
n|x − 2|
2(n + 1)

,

and

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

n|x − 2|
2(n + 1)

=
1

2
|x − 2|.

Therefore the series converges absolutely if
1

2
|x − 2| < 1, that is, |x − 2| < 2, and the radius of convergence

is R = 2.

Question 8. [Sec. 12.10, # 22] Prove that the Maclaurin series for

f(x) = coshx

represents coshx for all x.

Solution: First we find the Maclaurin series.

f(x) = coshx f(0) = 1

f ′(x) = sinh x f ′(0) = 0

f ′′(x) = coshx f ′′(0) = 1

f ′′′(x) = sinh x f ′′′(0) = 0, etc.

so the Maclaurin series is

∞
∑

n=0

f (n)(0)

n!
xn =

∞
∑

n=0

f (2n)(0)

(2n)!
x2n =

∞
∑

n=0

x2n

(2n)!
= 1 +

x2

2!
+

x4

4!
+ · · ·

Now, f (n+1)(x) = coshx or sinhx and sinh x < coshx for all x, so that

|f (n+1)(x)| ≤ coshx ≤ cosh d if |x| ≤ d.



From Taylor’s Inequality

|Rn(x)| ≤ M |x|n+1

(n + 1)!
≤ cosh d |x|n+1

(n + 1)!
,

and

lim
n→∞

|x|n+1

(n + 1)!
= 0,

so that

lim
n→∞

cosh d |x|n+1

(n + 1)!
= 0.

By the Squeeze Theorem, lim
n→∞

Rn(x) = 0 for |x| ≤ d, and since d is any real number, then coshx is equal

to its Maclaurin series for all x.

Question 9. [Sec. 12.10, # 30] Use a known Maclaurin series to obtain the Maclaurin series for the
function

f(x) = cos2 x.

Hint: Use cos2 x =
1

2
(1 + cos 2x).

Solution: Note that f(x) =
1

2
(1 + cos 2x), so that

cosx =

∞
∑

n=0

(−1)nx2n

(2n)!
(with R = ∞)

and this implies

cos 2x =

∞
∑

n=0

(−1)n(2x)2n

(2n)!
=

∞
∑

n=0

(−1)n22nx2n

(2n)!
= 1 +

∞
∑

n=1

(−1)n22nx2n

(2n)!

therefore

cos2 x =
1

2
+

1

2

{

1 +

∞
∑

n=1

(−1)n22nx2n

(2n)!

}

= 1 +

∞
∑

n=1

(−1)n22n−1x2n

(2n)!
,

for −∞ < x < ∞.

Question 10. [Sec. 12.10, # 46] Use series to approximate the definite integral

∫ 1/2

0

x2e−x2

dx

to within the accuracy |error| < 0.001.

Solution: Since ex =
∞
∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · , for −∞ < x < ∞, then

e−x2

=

∞
∑

n=0

(−x2)n

n!
=

∞
∑

n=0

(−1)nx2n

n!
= 1 − x2 +

x4

2!
− x6

3!
+ · · ·

x2e−x2

= x2 − x4 +
x6

2!
− x8

3!
+ · · · =

∞
∑

n=0

(−1)nx2n+2

n!



and

∫ 0.5

0

x2e−x2

dx =

[

x3

3
− x5

5
+

x7

7 · 2!
− x9

9 · 3!
+ · · ·

]0.5

0

=
(0.5)3

3
− (0.5)5

5
+

(0.5)7

14
− (0.5)9

54
+ · · · .

From the Alternating Series Estimate Theorem, |Rn| ≤ bn+1 and

(0.5)5

5
= 0.00625

(0.5)7

14
≈ 0.00056 < 0.001

therefore

∫ 0.5

0

x2e−x2

dx ≈ (0.5)3

3
− (0.5)5

5
≈ 0.0354.

Question 11. [Sec. 12.10, # 56] Find the sum of the series

∞
∑

n=0

(−1)nπ2n

62n(2n)!
.

Solution: We have
∞
∑

n=0

(−1)nπ2n

62n(2n)!
=

∞
∑

n=0

(−1)n

(2n)!

(π

6

)2n

= cos π
6 =

√
3

2
,

since cosx =
∞
∑

n=0

(−1)nx2n

(2n)!
.

Question 12. [Sec. 12.12, # 16a,b] Approximate

f(x) = cosx

by a Taylor polynomial Tn with degree n = 4 at the number a =
π

3
, and use Taylor’s Inequality to estimate

the accuracy of the approximation f(x) ≈ Tn(x) when x lies in the interval 0 ≤ x ≤ 2π/3.

Solution:

(a) We have

f(x) = cosx, f
(

π
3

)

=
1

2

f ′(x) = − sinx, f ′
(

π
3

)

= −
√

3

2

f ′′(x) = − cosx, f ′′
(

π
3

)

= −1

2

f ′′′(x) = sin x, f ′′′
(

π
3

)

=

√
3

2

f (4)(x) = cosx, f (4)
(

π
3

)

=
1

2

f (5)(x) = − sinx,



so that

T4(x) =
1

2
−

√
3

2

(

x − π
3

)

− 1

2 · 2!

(

x − π
3

)2
+

√
3

2 · 3!

(

x − π
3

)3
+

1

2 · 4!

(

x − π
3

)4
.

(b) We have

|Rn(x)| ≤ M |x − a|n+1

(n + 1)!
, |x − a| ≤ d

for |f (n+1)(x)| ≤ M .

If 0 ≤ x ≤ 2π/3, then |x − π/3| ≤ π/3 and

|f (5)(x)| = | − sin x| = | sin x| ≤ 1 = M

and therefore

|R4(x)| ≤ 1 · |x − π/3|5
5!

≤ (π/3)5

5!
≈ 0.01049.

Question 13. [Sec. 12.12, # 20a,b] Approximate

f(x) = x ln x

by a Taylor polynomial Tn with degree n = 3 at the number a = 1, and use Taylor’s Inequality to estimate
the accuracy of the approximation f(x) ≈ Tn(x) when x lies in the interval 1/2 ≤ x ≤ 3/2.

solution:

(a) We have

f(x) = x ln x, f(1) = 0

f ′(x) = ln x + 1, f ′(1) = 1

f ′′(x) =
1

x
, f ′′(1) = 1

f ′′′(x) = − 1

x2
, f ′′′(1) = −1

f (4)(x) =
2

x3
.

Therefore,

T3(x) = f(1) + f ′(1)(x − 1) +
f ′′(1)

2!
(x − 1)2 +

f ′′′(1)

3!
(x − 1)3

= (x − 1) +
1

2
(x − 1)2 − 1

3!
(x − 1)3.

(b) We want
|R3(x)| ≤ M |x − 1|4/4!,

and if 0.5 ≤ x ≤ 1.5, then |x − 1| ≤ 0.5, and

(0.5)3 ≤ x3 ≤ (1.5)3

implies

1

x3
≤ 1

(0.5)3



implies

|f (4)(x)| =

∣

∣

∣

∣

2

x3

∣

∣

∣

∣

≤ 2

(0.5)3
= 16 = M

therefore

|R3(x)| ≤ 16(0.5)4

4!
≈ 0.417.

Question 14. [Sec. 12.12, # 26] How many terms of the Maclaurin series for ln(1 + x) do you need to
use to estimate ln 1.4 to within 0.001 ?

Solution: We have

f(x) = ln(1 + x), f(0) = 0

f ′(x) =
1

1 + x
, f ′(0) = 1

f ′′(x) = − 1

(1 + x)2
, f ′′(0) = −1

f ′′′(x) =
2

(1 + x)3
, f ′′′(0) = 2

f (4)(x) = − 6

(1 + x)4
, f (4)(0) = −6, etc.

so the Maclaurin series is

ln(1 + x) = (x − 1) − 1

2!
(x − 1)2 +

2

3!
(x − 1)3 − · · ·

therefore

ln(1.4) = (.4) − 1

2
(.4)2 +

1

3
(.4)3 − 1

4
(.4)4 + · · · .

Since this is an alternating series, we use the Alternating Series Estimation Theorem,

(0.4)4

4
= 0.0064,

(0.4)5

5
= 0.002,

(0.4)6

6
≈ 0.0007 < 0.001,

and we need the first 5 (nonzero) terms of the Maclaurin series.


