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Question 1. [Sec. 12.4, # 8] Determine whether the series
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converges or diverges.
SOLUTION: Note that for n > 1
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and
n=1
is a geometric series with » = 3/2 > 1 which diverges. By the Comparison Test, the given series diverges
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Question 2. [Sec. 12.4, # 10] Determine whether the series

converges or diverges.
SOLUTION: Forn > 1

n?—1 < n? < n? _ 1
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converges, since it is a p-series with p = 2 > 1. Therefore
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converges. By the Comparison Test, the given series converges



Question 3. [Sec. 12.4, # 12] Determine whether the series
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converges or diverges.

SOLUTION: Since —1 < sinn < 1 implies that 0 < 1 +sinn < 2,
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converges, since it is a geometric series with 0 < » = 1/10 < 1. By the Comparison Test, the given series
converges.

Question 4. [Sec. 12.4, # 20] Determine whether the series
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converges or diverges.

SOLUTION: Note that
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converges since it is a geometric series with 0 < r = 2/3 < 1. By the Limit Comparison Test (L.C.T.), the
given series converges.

Question 5. [Sec. 12.4, # 26] Determine whether the series

converges or diverges.

SoLUTION: We have
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and Y —173 converges since it is a p-series with p = 4/3 > 1. The Limit Comparison Test implies the given
n=1M1

series converges.



Question 6. [Sec. 12.4, # 28] Determine whether the series

n=1
converges or diverges.
SOLUTION: We have
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and 2 > (1/3)™ converges (it’s a constant multiple of a geometric series with » = 1/3 < 1). Therefore by
n=1

the Limit Comparison Test, the given series converges.

Question 7. [Sec. 12.5, # 6] Test the series

for convergence or divergence.

SoLuTION: Let b, =1/(3n —1). Then b, > 0 for n > 1 and
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Also,
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and b, is decreasing. Therefore by the Alternating Series Test, the given series is convergent.
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Question 8. [Sec. 12.5, # 8] Test the series

> 2n
1y
Z( ) 4n? +1

n=1

for convergence or divergence.

SoLUTION: This is an alternating series with b,, = 2n/(4n? +1) > 0, Vn > 1 and

2n 2/n 0
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Let f(x) = 2z/(42? 4+ 1), then
Fla) = 2(42? 4+ 1) — 2z(8x) _ —8z% +2 _ —2(42% — 1) <0
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1
and this is true if and only if 422 — 1 > 0, that is, if and only if 422 > 1, or |z| > 3

Therefore, b, is decreasing for n > 1, and by the Alternating Series Test the given series converges.



Question 9. [Sec. 12.5, # 12] Test the series
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for convergence or divergence.

SoLuTioN: We have b, = /" /n > 0, forall n. > 1. Let f(z) = ¢*/*/x. Then lim e/*/z = 0 since e'/* — 1
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and x — oo.

Also,
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for all n > 1. Thus, b, is decreasing, and the given series converges by the Alternating Series Test.

Question 10. [Sec. 12.5, # 16] Test the series

>, sin(nn/2
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for convergence or divergence.
SOLUTION: Note that
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is an alternating series with b, = 1/(2n — 1)! > 0.
Also,
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and by, is decreasing and lim 1/(2n — 1)! = 0. By the Alternating Series Test the given series converges.
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Question 11. [Sec. 12.5, # 20] Test the series

>(-5)

for convergence or divergence.

SoLuTION: Note that if f(z) = (z/5)%, then y = (x/5)* implies that Iny = 2 In(z/5), so that
. . x
lim Iny = lim zln (g) = 0,

and therefore lim f(x) = oo, and the Alternating Series Test cannot be applied.
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However, a, = (—1)"(n/5)™ — 4oo from the above result, and the given series diverges by the Test for
Divergence.



Question 12. [Sec. 12.5, # 24] How many terms of the series
i (_1)n+1
1
n=1 n
do we need to add in order to find the sum to an accuracy with |error| < 0.001?

SoLUTION: We first show that the alternating series converges. We have b,, = 1/n* > 0, b,, — 0 as n — oo
and b, is decreasing since n? is increasing, so the Alternating Series Test implies the series converges.

The remainder after n terms is |R,| < b1 = 1/(n + 1)%, and we have
by = s 0.0039, bs = 51~ 0.0016, be = 61~ 0.00077 < 0.001,
and we need n = 5 terms.

Alternatively,

implies that
1000 < (n+ 1)*,

so that n 4+ 1 > /1000 ~ 5.62, and this implies that n > 4.62, and as before we need n = 5 terms.

Question 13. [Sec. 12.5, # 32] For which values of p is the series
5
npb
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convergent 7

SoLuTION: If p > 0, then b, = 1/n? > 0, b,41 < b, and b, — 0 as n — o0, so by the Alternating Series
Test, the series converges if p > 0.

Ifp<0,let ¢g=—p>0. Then
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If p = 0, then the series becomes Y (—1)""! and
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Therefore, by the Test for Divergence, the alternating series diverges for p < 0.

Hence the above series converges only for p > 0.



