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Question 1. [Sec. 15.2, # 8] Find the limit

lim
(x,y)→(0,0)

x2 + sin2 y

2x2 + y2
,

if it exists, or show that the limit does not exist.

Solution: Let (x, y) → (0, 0) along the x-axis (y = 0, x 6= 0), then

f(x, y) =
x2

2x2
=

1

2
,

which implies

lim
(x,y)→(0,0)

f(x, y) =
1

2
.

Now let (x, y) → (0, 0) along the y-axis (x = 0, y 6= 0), then

f(x, y) =
sin2 y

y2
,

which implies

lim
(x,y)→(0,0)

sin2 y

y2
=

(

lim
(x,y)→(0,0)

sin y

y

)2

= 12 = 1.

Since the limits along 2 different paths are not the same, lim
(x,y)→(0,0)

f(x, y) does not exist.

Question 2. [Sec. 15.2, # 16] Find the limit

lim
(x,y)→(0,0)

x y4

x2 + y8
,

if it exists, or show that the limit does not exist.

Solution: Along the x-axis (x 6= 0, y = 0),

f(x, y) =
0

x2
= 0

which implies
lim

(x,y)→(0,0)
f(x, y) = 0.



Along the path x = y4,

f(x, y) =
y4y4

y8 + y8
=

y8

2y8
=

1

2

which implies

lim
(x,y)→(0,0)

f(x, y) =
1

2
.

Again, the limits are different along 2 different paths so the limit of f(x, y) does not exist as (x, y) → (0, 0).

(Note: these are just 2 examples of paths. You may have used different paths to show the same result.)

Question 3. [Sec. 15.2, # 36] Determine the set of points at which the function

f(x, y) =











xy

x2 + xy + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

is continuous.

Solution: The first piece of f is a rational function that is defined for (x, y) 6= (0, 0) and so continuous
there. We need to check continuity at (0, 0).

Along the y-axis (x = 0, y 6= 0),

f(x, y) =
0

y2
= 0

which implies
lim

(x,y)→(0,0)
f(x, y) = 0.

Along the line y = x,

f(x, y) =
x2

x2 + x2 + x2
=

x2

3x2
=

1

3

which implies

lim
(x,y)→(0,0)

f(x, y) =
1

3
.

Therefore lim
(x,y)→(0,0)

f(x, y) does not exist (2 different limits along 2 different paths), and so f is not contin-

uous at (0, 0). Thus, f is continuous on the set {(x, y) | (x, y) 6= (0, 0)}.

Question 4. [Sec. 15.3, # 22] Find the first partial derivatives of the function

f(x, t) = arctan
(

x
√

t
)

.

Solution: Differentiating,

∂f

∂x
=

√
t

1 + x2t

∂f

∂t
=

1

1 + x2t

(

x · 1

2
t−

1

2

)

=
x

2
√

t (1 + x2t)
.



Question 5. [Sec. 15.3, # 24] Find the first partial derivatives of the function

f(x, y) =

∫ x

y

cos(t2) dt.

Solution: We use the Fundamental Theorem of Calculus,

∂f

∂x
=

∂

∂x

∫ x

y

cos(t2) dt = cos(x2)

∂f

∂y
=

∂

∂y

∫ x

y

cos(t2) dt = − ∂

∂y

∫ y

x

cos(t2) dt = − cos(y2).

Question 6. [Sec. 15.3, # 30] Find the first partial derivatives of the function

u = xy/z.

Solution: We have

∂u

∂x
=

y

z
x

y

z
−1,

∂u

∂y
= (ln x)x

y

z

(

1

z

)

=
ln x

z
x

y

z ,

∂u

∂z
= (ln x) x

y

z

(

− y

z2

)

= −y ln x

z2
x

y

z .

Question 7. [Sec. 15.3, # 44] Use implicit differentiation to find
∂z

∂x
and

∂z

∂y
if

sin(xyz) = x + 2y + 3z.

Solution: First we find
∂z

∂x
:

(cos(xyz))

(

yz + xy
∂z

∂x

)

= 1 + 3
∂z

∂x

(xy cos(xyz) − 3)
∂z

∂x
= 1 − yz cos(xyz)

therefore

∂z

∂x
=

1− yz(cos(xyz))

xy cos(xyz) − 3
.

Next we find
∂z

∂y
:

(cos(xyz))

(

xz + xy
∂z

∂y

)

= 2 + 3
∂z

∂y

(xy cos(xyz) − 3)
∂z

∂y
= 2 − xz cos(xyz)

therefore

∂z

∂y
=

2 − xz cos(xyz)

xy cos(xyz) − 3
.



Question 8. [Sec. 15.3, # 46] Find
∂z

∂x
and

∂z

∂y
for

(a) z = f(x)g(y) (b) z = f(xy) (c) z = f
(

x/y
)

.

Solution:

(a)
∂z

∂x
= f ′(x)g(y),

∂z

∂y
= f(x)g′(y).

(b)
∂z

∂x
= f ′(xy)(y),

∂z

∂y
= f ′(xy)(x) since u = xy implies that

∂z

∂x
=

df

du

∂u

∂x
= f ′(u)(y) = yf ′(xy)

∂z

∂y
=

df

du

∂u

∂y
= f ′(u)(x) = xf ′(xy).

(c) Let u = x/y, then

∂z

∂x
=

df

du

∂u

∂x
= f ′

(

x

y

)

1

y

∂z

∂y
=

df

du

∂u

∂y
= f ′

(

x

y

) (

− x

y2

)

= − x

y2
f ′

(

x

y

)

.

Question 9. [Sec. 15.3, # 60] Given the function

f(r, s, t) = r ln(rs2t3),

find the partial derivatives frss and frst.

Solution: We have

frss =
∂

∂s

(

∂

∂s

(

∂f

∂r

))

=
∂

∂s

(

∂

∂s

(

ln(rs2t3) +
r(s2t3)

rs2t3

))

=
∂

∂s

(

∂

∂s

(

ln(rs2t3) + 1
)

)

=
∂

∂s

(

1

rs2t3
· 2rst3

)

=
∂

∂s

(

2

s

)

= − 2

s2

frst =
∂

∂t

(

∂

∂s

(

∂f

∂r

))

=
∂

∂t

(

∂

∂s
(ln(rs2t3) + 1))

)

=
∂

∂t

(

2

s

)

= 0.

Question 10. [Sec. 15.4, # 6] Find an equation of the tangent plane to the surface

z = ex2
−y2

at the point (1,−1, 1).

Solution: The tangent plane at (x0, y0, z0) has an equation of the form

z − z0 = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0).

Note that
fx = 2xex2

−y2

and fy = −2yex2
−y2

.

At the point (1,−1, 1),
fx(1,−1) = 2 and fy(1,−1) = 2.

Therefore an equation of the tangent plane is

z − 1 = 2(x − 1) + 2(y + 1),

that is, 2x + 2y − z = −1.



Question 11. [Sec. 15.4, # 16] Explain why the function

f(x, y) = sin(2x + 3y)

is differentiable at the point (−3, 2) and find the linearization L(x, y) of the function at that point.

Solution: We have f(x, y) = sin(2x + 3y), so that

fx = 2 cos(2x + 3y) which implies fx(−3, 2) = 2 cos 0 = 2

fy = 3 cos(2x + 3y) which implies fy(−3, 2) = 3 cos 0 = 3.

Therefore, fx and fy exist for all (x, y) and they are continuous (since the cosine function is continuous) at
(−3, 2), so that f is differentiable at (−3, 2), and

L(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

= f(−3, 2) + fx(−3, 2)(x + 3) + fy(−3, 2)(y − 2)

= sin 0 + 2(x + 3) + 3(y − 2) = 2x + 3y.

Question 12. [Sec. 15.4, # 18] Find the linear approximation to the function

f(x, y, z) = ln(x − 3y)

at the point (7, 2) and use it to approximate f(6.9, 2.06). Illustrate by graphing f and the tangent plane.

Solution: We have

fx =
1

x − 3y
which implies fx(7, 2) =

1

7 − 6
= 1,

fy =
−3

x − 3y
which implies fy(7, 2) =

−3

7 − 6
= −3,

and the the linearization of f at (7, 2) is

L(x, y) = f(7, 2) + fx(7, 2)(x − 7) + fy(7, 2)(y − 2)

= ln 1 + (x − 7) − 3(y − 2) = x − 7 − 3y + 6 = x − 3y − 1,

so that f(x, y) ≈ x − 3y − 1. Hence

f(6.9, 2.06) ≈ 6.9 − 3(2.06)− 1 = −.28.

Question 13. [Sec. 15.4, # 34] Use differentials to estimate the amount of metal in a closed cylindrical
can that is 10 cm high and 4 cm in diameter if the metal in the top and bottom is 0.1 cm thick and the
metal in the sides is 0.05 cm thick.

Solution: The volume of the can is V = πr2h. The amount of metal is estimated by dV ≈ ∆V . ∆h =
0.2 cm, ∆r = 0.05 cm, r = 2 cm and h = 10 cm. Therefore,

dV =
∂V

∂r
dr +

∂V

∂h
dh = 2πrh dr + πr2 dh

= 2π(2)(10)(0.05) + π(22)(0.2) = 2π + 0.8π = 2.8π ≈ 8.8.

The amount of metal is approximately 8.8 cm3.



Question 14. [Sec. 15.5, # 10] Use the Chain Rule to find
∂z

∂s
and

∂z

∂t
if

z = exy tan y, x = s + 2t, y = s/t.

Solution: We have

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
= yexy tan y +

(

1

t

)

(xexy tan y + exy sec2 y),

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
= (yexy tan y)(2) + (xexy tan y + exy sec2 y)

(

− s

t2

)

.

Question 15. [Sec. 15.5, # 14] Let

W (s, t) = F (u(s, t), v(s, t))

where F, u, and v are differentiable, and where

u(1, 0) = 2, us(1, 0) = −2, ut(1, 0) = 6

v(1, 0) = 3, vs(1, 0) = 5, vt(1, 0) = 4

Fu(2, 3) = −1, Fv(2, 3) = 10.

Find Ws(1, 0) and Wt(1, 0).

Solution: Note that
u(1, 0) = 2, v(1, 0) = 3

which implies that

Fu(u(1, 0), v(1, 0)) = Fu(2, 3) and Fv(u(1, 0), v(1, 0)) = Fv(2, 3),

and so

∂W

∂s
=

∂F

∂u

∂u

∂s
+

∂F

∂v

∂v

∂s

which implies

Ws(1, 0) = Fu(2, 3)us(1, 0) + Fv(2, 3)vs(1, 0)

= −1 · (−2) + (10)(5) = 2 + 50 = 52,

∂W

∂t
=

∂F

∂u

∂u

∂t
+

∂F

∂v

∂v

∂t

which implies

Wt(1, 0) = Fu(2, 3)ut(1, 0) + Fv(2, 3)vt(1, 0)

= (−1)(6) + (10)(4) = −6 + 40 = 34.



Question 16. [Sec. 15.5, # 26] Let Y = w tan−1(uv) where

u = r + s, v = s + t, w = t + r.

Find the partial derivatives
∂Y

∂r
,

∂Y

∂s
, and

∂Y

∂t
when r = 1, s = 0, t = 1.

Solution: From the Chain Rule we have

∂Y

∂r
=

∂Y

∂u

∂u

∂r
+

∂Y

∂v

∂v

∂r
+

∂Y

∂w

∂w

∂r

∂Y

∂s
=

∂Y

∂u

∂u

∂s
+

∂Y

∂v

∂v

∂s
+

∂Y

∂w

∂w

∂s

∂Y

∂t
=

∂Y

∂u

∂u

∂t
+

∂Y

∂v

∂v

∂t
+

∂Y

∂w

∂w

∂t
.

Therefore r = 1, s = 0, t = 1, we get u = 1, v = 1, w = 2, so that

∂Y

∂r
=

(

wv

1 + u2v2

)

(1) +

(

wu

1 + u2v2

)

(0) + (tan−1(uv))(1)

=
vw

1 + u2v2
+ tan−1(uv),

and
∂Y

∂r

∣

∣

∣

∣

(1,1,2)

=
2(1)

1 + 1
+ tan−1 1 = 1 +

π

2
.

Also,

∂Y

∂s
=

wv

1 + u2v2
+

wu

1 + u2v2
+ tan−1(uv)(0)

=
vw

1 + u2v2
+

uw

1 + u2v2
,

and
∂Y

∂s

∣

∣

∣

∣

(1,1,2)

= 1 +
2(1)

1 + 1
= 1 + 1 = 2.

Finally,

∂Y

∂t
=

wv

1 + u2v2
(0) +

wu

1 + u2v2
+ tan−1(uv)

and
∂Y

∂t

∣

∣

∣

∣

(1,1,2)

= 1 + tan−1 1 = 1 +
π

2
.



Question 17. [Sec. 15.5, # 30] Use the equation

dy

dx
= −

∂F

∂x
∂F

∂y

= −Fx

Fy

to find
dy

dx
if

sinx + cos y = sinx cos y.

Solution: Let
F (x, y) = sin x + cos y − sin x cos y,

and suppose that the equation F (x, y) = 0 defines y = f(x) as a function of x implicitly.

We have
Fx = cosx − cosx cos y and Fy = − sin y + sin x sin y,

so that
dy

dx
= −Fx

Fy
=

cosx(1 − cos y)

sin y(1 − sin x)
.


