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Question 1. [Sec. 12.1, #12] Find a formula for the general term an of the sequence assuming that the
pattern of the first few terms continues.

{

−1

4
,
2

9
,− 3

16
,

4

25
, . . .

}

Solution: We note that this is an alternating sequence where the numerator increases by 1 starting with
n = 1 and the denominator is the square of n + 1 starting with n = 1. Hence the general formula is

an =
(−1)n n

(n + 1)2
, n = 1, 2, . . . .

Question 2. [Sec. 12.1, #22] Determine whether the sequence an =
(−1)nn3

n3 + 2n2 + 1
converges or diverges.

If it converges, find the limit.

Solution: First note that

lim
n→∞

|an| = lim
n→∞

n3

n3 + 2n2 + 1
= lim

n→∞

1

1 + 2

n
+ 1

n3

=
1

1 + 0 + 0
= 1,

and the sequence a2, a4, . . . approaches 1 whereas the sequence a1, a3, . . . approaches −1 (because of the
(−1)n). In other words, the sequence an oscillates between the values −1 and 1 as n → ∞. Hence, lim

n→∞
an

does not exist, and the sequence {an}n≥1 diverges.

Question 3. [Sec. 12.1, #26] Determine whether the sequence an = arctan 2n converges or diverges. If
it converges, find the limit.

Solution: As n → ∞, 2n → ∞, and

lim
x→∞

tan−1 2x = lim
x→∞

tan−1 x =
π

2

implies

lim
n→∞

tan−1 2n =
π

2
,

so that {arctan2n}n≥1 converges.



Question 4. [Sec. 12.1, #34] Determine whether the sequence an =
√

n−
√

n2 − 1 converges or diverges.
If it converges, find the limit.

Solution: We calculate the limit as follows

lim
n→∞

(
√

n −
√

n2 − 1) = lim
n→∞

(
√

n −
√

n2 − 1)(
√

n +
√

n2 − 1)
√

n +
√

n2 − 1

= lim
n→∞

n − n2 + 1
√

n +
√

n2 − 1
= lim

n→∞

1 − n + 1

n
√

1

n
+

√

1 − 1

n2

= −∞.

Here we divided top and bottom by
√

n2 = n, n > 0. The sequence diverges to −∞.

Question 5. [Sec. 12.1, #36] Determine whether the sequence an =
sin 2n

1 +
√

n
converges or diverges. If it

converges, find the limit.

Solution: Since sin 2n changes sign, we look at |an|. Also recall that | sin 2n| ≤ 1. Therefore

0 <

∣

∣

∣

∣

sin 2n

1 +
√

n

∣

∣

∣

∣

≤ 1

1 +
√

n
<

1√
n

for n ≥ 1

and

lim
n→∞

1√
n

= 0

(

or lim
n→∞

1

1 +
√

n
= 0

)

.

From the Squeeze Theorem, |an| → 0 and therefore an → 0 also. Therefore the sequence converges and

lim
n→∞

sin 2n

1 +
√

n
= 0.

Question 6. [Sec. 12.2, #20] Determine whether the series

∞
∑

n=1

en

3n−1

is convergent or divergent. If it is convergent, find the sum.

Solution: Note that this is a geometric series with 0 < r = e/3 < 1 so converges.

∞
∑

n=1

en

3n−1
=

∞
∑

n=1

een−1

3n−1
= e

∞
∑

n=1

(e

3

)n−1

= e · 1

1 − e

3

=
3e

3 − e
.

(Here 0 < r = e/3 < 1.) The sum converges.

Question 7. [Sec. 12.2, #22] Determine whether the series

∞
∑

n=1

3

n

is convergent or divergent. If it is convergent, find the sum.

Solution: This is just the harmonic series,

sn = 3

(

1 +
1

2
+

1

3
+ · · · + 1

n

)

→ ∞

and the series divereges.



Question 8. [Sec. 12.2, #24] Determine whether the series

∞
∑

n=1

(n + 1)2

n(n + 2)

is convergent or divergent. If it is convergent, find the sum.

Solution: We check lim
n→∞

an.

lim
n→∞

(n + 1)2

n(n + 2)
= lim

n→∞

(n+1

n
)2

(

n+2

n

) = lim
n→∞

(1 + 1

n
)2

1 + 2

n

=
1

1
= 1 6= 0,

and by the Test for Divergence the series diverges.

Question 9. [Sec. 12.2, #28] Determine whether the series

∞
∑

n=1

[(0.8)n−1 − (0.3)n]

is convergent or divergent. If it is convergent, find the sum.

Solution: We note that the series looks like the difference of two geometric series.

∞
∑

n=1

[(0.8)n−1 − (0.3)n] =
∞
∑

n=1

(

8

10

)n−1

−
∞
∑

n=1

(

3

10

)n

=
∞
∑

n=1

(

4

5

)n−1

− 3

10

∞
∑

n=1

(

3

10

)n−1

so each is a convergent geometric series and

∞
∑

n=1

[(0.8)n−1 − (0.3)n] =
1

1 − 4

5

− 3

10
· 1

1 − 3

10

=
1
1

5

−
3

10

7

10

=
32

7
.

Question 10. [Sec. 12.2, #30] Determine whether the series

∞
∑

n=1

ln

(

n

2n + 5

)

is convergent or divergent. If it is convergent, find the sum.

Solution: We look at the function ln(x/(2x + 5)).

lim
x→∞

ln

(

x

2x + 5

)

= ln

(

lim
x→∞

x

2x + 5

)

= ln
1

2
,

since ln function is continuous. Hence

lim
n→∞

ln

(

n

2n + 5

)

= ln
1

2
6= 0,

and the series diverges by the Test for Divergence.



Question 11. [Sec. 12.2, #44] Find the values of x for which the series

∞
∑

n=0

(x + 3)n

2n

converges. Find the sum of the series for those values of x.

Solution: The series is a geometric series and it converges iff

∣

∣

∣

∣

x + 3

2

∣

∣

∣

∣

< 1

that is, if and only if |x + 3| < 2, so that −2 < x + 3 < 2 so that −5 < x < −1. The sum is

s =
1

1 − x+3

2

=
1

2−x−3

2

=
2

−x − 1
= − 2

x + 1
, −5 < x < −1.

Question 12. [Sec. 12.3, #10] Determine whether the series

∞
∑

n=1

(n−1.4 + 3n−1.2)

is convergent or divergent.

Solution: We have
∞
∑

n=1

(n−1.4 + 3n−1.2) =

∞
∑

n=1

1

n1.4
+ 3

∞
∑

n=1

1

n1.2
.

Both of these are p-series where p = 1.4 > 1 and p = 1.2 > 1, respectively, hence they both converge and
the sum is also convergent.

Question 13. [Sec. 12.3, #16] Determine whether the series

∞
∑

n=1

3n + 2

n(n + 1)

is convergent or divergent.

Solution: Let f(x) =
3x + 2

x(x + 1)
, we find the partial fraction decomposition of the function first.

3x + 2

x(x + 1)
=

A

x
+

B

x + 1
and 3x + 2 = A(x + 1) + Bx,

therefore 3x + 2 = A(x + 1) + Bx so that x = 0 implies 2 = A and x = −1 implies B = 1. Therefore

f(x) =
2

x
+

1

x + 1

on [1,∞). It is easy to see that f is continuous, positive, and decreasing since both 2/x and 1/(x + 1) are
decreasing hence the sum is decreasing. And

∫ ∞

1

(

2

x
+

1

x + 1

)

dx = lim
t→∞

∫

t

1

(

2

x
+

1

x + 1

)

dx = lim
t→∞

(2 lnx + 2 ln(x + 1))

∣

∣

∣

∣

t

1

= lim
t→∞

(2 ln t + 2 ln(t + 1) − 2 ln 1 − 2 ln 2) = ∞,

and the series diverges by the Integral Test.



Question 14. [Sec. 12.3, #24] Determine whether the series

∞
∑

n=3

1

n ln n ln(ln n)

is convergent or divergent.

Solution: Let f(x) = 1/x lnx ln(ln x) on [3,∞), it is easy to see that f is continuous, positive, and
decreasing since the bottom is increasing, so that

∫ ∞

3

1

x ln x ln(ln x)
dx = lim

t→∞

∫

t

3

1

x ln x ln(ln x)
dx

= lim
t→∞

∫ ln ln t

ln ln 3

1

u
du (u = ln(ln x), du = 1

ln x
· 1

x
dx)

= lim
t→∞

ln u

∣

∣

∣

∣

ln ln t

ln ln 3

= lim
t→∞

[ln(ln(ln t)) − ln(ln(ln 3))] = ∞,

and by the Integral Test, the series diverges.

Question 15. [Sec. 12.3, #32] Find the sum of the series

∞
∑

n=1

1

n5

correct to three decimal places.

Solution: From the Integral Test we showed that the series is convergent for p > 1 so the above series is
convergent and the remainder term is

Rn ≤
∫ ∞

n

1

x5
dx = lim

t→∞

∫

t

n

1

x5
dx = lim

t→∞
− 1

4x4

∣

∣

∣

∣

t

n

=
1

4n4
,

R1 =
1

4
= 0.25

R2 =
1

4 · 16
=

1

64
= 0.015625

R3 =
1

4 · 34
= 0.003086

R4 =
1

4 · 44
= 0.00097656

R5 =
1

4 · 54
= 0.0004.

If we use s5 to approximate the sum, then R5 ≤ 0.0004, so

s ≈ s5 = 1 +
1

25
+

1

35
+

1

45
+

1

55
≈ 1.03666 ≈ 1.037

correct to three decimal places.



Question 16. Show that the sequence

an =
qn

1 + q2n

converges to the same limit 0 for both |q| < 1 and |q| > 1.

Solution: Note that for |q| < 1,

0 ≤ |an| =
|q|n

1 + |q|2n
< |q|n → 0

as n → ∞.

Also, for |q| > 1,

0 ≤ |an| =
1/|q|n

1 + 1/|q|2n
<

1

|q|n → 0

as n → ∞.


