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Question 1. Find the sum of the series (if possible).
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5— diverges by the Test for Divergence since nlin;o 32 doesn’t exist.
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Question 2. Determine whether the given series is absolutely convergent, conditionally convergent, or
divergent. Give all the details related to the application of appropriate convergence or divergence tests.

118

="
(a)
is positive, decreasing, and a,, — 0 as n — oo, the series converges by
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the alternating series test.
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— is positive, eventually decreasing, and a,, — 0 as n — oo, the series converges
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ANSWER: Since a—
by the alternating series test.
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Question 3. Find the radius of convergence and the interval of convergence for the power series.
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ANSWER: By the ratio test we have
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if |z —3| < 3 and the radius of convergence is R =
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at the endpoints, the series converges at x = —
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The series converges absolutely for — < z < > an 5

(alternating series test) and diverges at z = g (compare with harmonic series). The interval of
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convergence is [5, 5] .
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ANSWER: By the ratio test we have
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if [4x + 1] < 1, that is, |« + 1/4]| < 1/4, and the radius of convergence is R = 1
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The series converges absolutely for ~3 < x < 0, and at the endpoints, the series converges at x = 0
1
(p-series for p = 2) and the series converges at x = —5 (alternating series test). The interval of

1
convergence is [—5,0} .

Question 4. Do the following series converge? Why?

ANSWER: The series converges to e!? — 1.
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ANSWER: The series converges by the limit comparison test (take b,, = 1/n%/?).
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ANSWER: The series converges by the alternating series test.
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ANSWER: The series converges by comparison with b, = 1/2", since Inn > 2 for n > €.
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ANSWER: The series converges absolutely by the comparison test (p-series with p = 3/2), therefore
the series converges.



uestion 5. A curve is given by its parametric equations: z = 4t> — 5, y = ¢ — 3t + 1.
g y 118 p q Y
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(a) Find ﬁ

dy dy/dt 3t —6t 3(t—2)
ANSWER: —= = = =
NSWERS 0 T da/dt 8t

for ¢ # 0.

(b) Find the equation of the line tangent to the curve at the point (11, —19).

ANSWER: The point (11, —19) on the curve occurs for the value ¢ = —2 of the parameter. The slope
of the tangent line at this point is

_dy 12 3

T, 8T Y

and the point (z,y) is on the tangent line if and only if
3

(¢) At what points does the curve have horizontal tangent lines? Justify your answer.
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ANSWER: The tangent line is horizontal if d—‘z =0 but d_:tc # 0. For this curve, we have

d

d—i =326t =3t(t—2)=0

if and only if t = 0 or ¢t = 2. If t = 2, then c(li_z = 16 and the tangent line is horizontal at the point
(11,-3). !

When ¢ = 0, we need to check

and the tangent line is not horizontal.
Question 6. Find the length of the curve:

(a) z=elcost,y=elsint, 0 <t < 7/2.

ANSWER: Here

dx dy
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b) z=t3,y=t3,0<t<1
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so that
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Letting u = 9t2 + 4, then du = 18tdt, and
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Question 7. Find the area of surface of revolution when the curve x = 3, y =12, 0 <t < 1 is revolved
about the z-axis.

ANSWER: The surface area is
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Suggested problems from the text: Chapter 12 Review Problems (p. 823)

#13, 15, 16, 19, 22, 25, 29, 30, 35, 43, 45, 47, 49, 51, 57(a).



