MATH 214 (R1) Winter 2008

Intermediate Calculus I

Problem Set \#9

Completion Date: Friday March 28, 2008

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [Sec. 14.2, \# 8] Given the vector equation

$$
\mathbf{r}(t)=2 \sin t \mathbf{i}+3 \cos t \mathbf{j}
$$

(a) sketch the plane curve with the given vector equation,
(b) find $\mathbf{r}^{\prime}(t)$,
(c) sketch the position vector $\mathbf{r}(t)$ and the tangent vector $\mathbf{r}^{\prime}(t)$ for the value $t=\pi / 3$.

Question 2. [Sec. 14.2, \# 26] Find parametric equations for the tangent line to the curve whose parametric equations are

$$
x=\ln t, \quad y=2 \sqrt{t}, \quad z=t^{2}, \quad 0<t<\infty
$$

at the point $(0,2,1)$.
Question 3. [Sec. 14.2, \# 30] Given the curve

$$
\mathbf{r}(t)=\langle\sin \pi t, 2 \sin \pi t, \cos \pi t\rangle
$$

(a) Find the point of intersection of the tangent lines to the curve at the points where $t=0$ and $t=0.5$.
(b) Illustrate by graphing the curve and both tangent lines.

Question 4. [Sec. 14.2, \# 40] Find $\mathbf{r}(t)$ if

$$
\mathbf{r}^{\prime}(t)=\sin t \mathbf{i}-\cos t \mathbf{j}+2 t \mathbf{k} \quad \text { and } \quad \mathbf{r}(0)=\mathbf{i}+\mathbf{j}+2 \mathbf{k}
$$

Question 5. [Sec. 14.3, \# 2] Find the length of the curve

$$
\mathbf{r}(t)=\left\langle t^{2}, \sin t-t \cos t, \cos t+t \sin t\right\rangle, \quad 0 \leq t \leq \pi
$$

Question 6. [Sec. 14.3, \# 14] Given the curve

$$
\mathbf{r}(t)=\left\langle t^{2}, \sin t-t \cos t, \cos t+t \sin t\right\rangle, \quad t>0
$$

(a) Find the unit tangent and unit normal vectors $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
(b) Use the formula

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

to find the curvature.

Question 7. [Sec. 14.3, \# 18] Given the curve

$$
\mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+\left(1+t^{2}\right) \mathbf{k}
$$

use the formula

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
$$

to find the curvature.
Question 8. [Sec. 14.3, \#26] Given the curve $y=\ln x$, at what point does the curve have maximum curvature? What happens to the curvature as $x \rightarrow \infty$?

Question 9. [Sec. 14.3, \# 42] Find the equations of the normal plane and the osculating plane of the curve

$$
x=t, \quad y=t^{2}, \quad z=t^{3}
$$

at the point $(1,1,1)$.
Question 10. [Sec. 15.1, \# 16] Find and sketch the domain of the function

$$
f(x, y)=\sqrt{y-x} \ln (y+x)
$$

Question 11. [Sec. 15.1, \# 18] Find and sketch the domain of the function

$$
f(x, y)=\sqrt{x^{2}+y^{2}-1}+\ln \left(4-x^{2}-y^{2}\right)
$$

Question 12. [Sec. 15.1, \# 26] Sketch the graph of the function

$$
f(x, y)=3-x^{2}-y^{2}
$$

Question 13. [Sec. 15.1, \# 38] Draw a contour map of the function

$$
f(x, y)=x^{2}-y^{2}
$$

showing several level curves.

