MATH 214 (R1) Winter 2008
 Intermediate Calculus I

Problem Set \#6

Completion Date: Friday February 29, 2008

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [Sec. 11.3, \# 20] Identify the curve

$$
r=\tan \theta \sec \theta
$$

by finding a Cartesian equation for the curve.
Question 2. [Sec. 11.3, \# 26] Find the polar equation for the curve represented by the Cartesian equation

$$
x^{2}-y^{2}=1
$$

Question 3. [Sec. 11.3, \# 34] Sketch the curve with polar equation

$$
r=1-3 \cos \theta
$$

Question 4. [Sec. 11.3, \# 38] Sketch the curve with polar equation

$$
r=2 \cos 3 \theta
$$

Question 5. [Sec. 11.3, \# 44] Sketch the curve with polar equation

$$
r^{2} \theta=1 .
$$

Question 6. [Sec. 11.3, \# 60] Find the slope of the tangent line to the polar curve

$$
r=\sin 3 \theta
$$

at the point $\theta=\frac{\pi}{6}$.
Question 7. [Sec. 11.4, \# 18] Find the area of the region enclosed by one loop of the curve

$$
r=4 \sin 3 \theta
$$

Question 8. [Sec. 11.4, \# 24] Find the area of the region that lies inside the curve $r=1-\sin \theta$ and outside the curve $r=1$.

Question 9. [Sec. 11.4, \# 30] Find the area of the region that lies inside both of the curves $r=\sin 2 \theta$ and $r=\sin \theta$.

Question 10. [Sec. 11.4, \#32] Find the area of the region that lies inside both of the curves $r^{2}=2 \sin 2 \theta$ and $r=1$.

Question 11. [Sec. 11.4, \# 40] Find all points of intersection of the curves $r=\cos 3 \theta$ and $r=\sin 3 \theta$.
Question 12. [Sec. 11.4, \# 46] Find the exact length of the of the polar curve

$$
r=e^{2 \theta}, \quad 0 \leq \theta \leq 2 \pi
$$

