MATH 214 (R1) Winter 2008
 Intermediate Calculus I

Problem Set \#5

Completion Date: Friday February 15, 2008

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [Sec. 11.1, \# 10] Given the parametric equations $x=t^{2}, y=t^{3}$
(a) Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases.
(b) Eliminate the parameter to find a Cartesian equation of the curve.

Question 2. [Sec. 11.1, \# 12] Given the parametric equations

$$
x=4 \cos \theta, \quad y=5 \sin \theta, \quad-\pi / 2 \leq \theta \leq \pi / 2
$$

(a) Eliminate the parameter to find a Cartesian equation of the curve.
(b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

Question 3. [Sec. 11.1, \# 16] Given the parametric equations

$$
x=\ln t, \quad y=\sqrt{t}, \quad t \geq 1
$$

(a) Eliminate the parameter to find a Cartesian equation of the curve.
(b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

Question 4. [Sec. 11.1, \# 22] Describe the position of a particle with position (x, y) where

$$
x=\cos ^{2} t, \quad y=\cos t, \quad 0 \leq t \leq 4 \pi
$$

as t varies in the given interval.
Question 5. [Sec. 11.2, \# 8] Find an equation of the tangent to the curve

$$
x=\tan \theta, \quad y=\sec \theta
$$

at the point $(1, \sqrt{2})$ by 2 methods: (a) without eliminating the parameter and (b) by first eliminating the parameter.

Question 6. [Sec. 11.2, \# 16] Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ if $x=\cos 2 t, y=\cos t, 0<t<\pi$. For which values of t is the curve concave upward?

Question 7. [Sec. 11.2, \# 18] Find the points on the curve

$$
x=2 t^{3}+3 t^{2}-12 t, y=2 t^{3}+3 t^{2}+1
$$

where the tangent is horizontal or vertical.

Question 8. [Sec. 11.2, \# 34] Find the area of the region enclosed by the astroid

$$
x=a \cos ^{3} \theta, \quad y=a \sin ^{3} \theta
$$

Question 9. [Sec. 11.2, \# 44] Find the length of the curve

$$
x=e^{t}+e^{-t}, \quad y=5-2 t, \quad 0 \leq t \leq 3
$$

Question 10. [Sec. 11.2, \# 60] Find the area of the surface obtained by rotating the curve

$$
x=3 t-t^{3}, \quad y=3 t^{2}, \quad 0 \leq t \leq 1
$$

about the x-axis.
Question 11. [Sec. 11.2, \# 66] Find the surface area generated by rotating the curve

$$
x=e^{t}-t, \quad y=4 e^{t / 2}, \quad 0 \leq t \leq 1
$$

about the y-axis.

